These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36105598)

  • 1. Nanocellulose Composites as Smart Devices With Chassis, Light-Directed DNA Storage, Engineered Electronic Properties, and Chip Integration.
    Bencurova E; Shityakov S; Schaack D; Kaltdorf M; Sarukhanyan E; Hilgarth A; Rath C; Montenegro S; Roth G; Lopez D; Dandekar T
    Front Bioeng Biotechnol; 2022; 10():869111. PubMed ID: 36105598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced Nanocellulose-Based Composites for Flexible Functional Energy Storage Devices.
    Xu T; Du H; Liu H; Liu W; Zhang X; Si C; Liu P; Zhang K
    Adv Mater; 2021 Dec; 33(48):e2101368. PubMed ID: 34561914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and applications of transparent conductive nanocellulose paper.
    Li S; Lee PS
    Sci Technol Adv Mater; 2017; 18(1):620-633. PubMed ID: 28970870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry.
    Chen C; Hu L
    Acc Chem Res; 2018 Dec; 51(12):3154-3165. PubMed ID: 30299086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites - A review.
    Agate S; Joyce M; Lucia L; Pal L
    Carbohydr Polym; 2018 Oct; 198():249-260. PubMed ID: 30092997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA storage-from natural biology to synthetic biology.
    Bencurova E; Akash A; Dobson RCJ; Dandekar T
    Comput Struct Biotechnol J; 2023; 21():1227-1235. PubMed ID: 36817961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Hydrophobicity in Nanocellulose-Based Materials: Toward Green Wearable Devices.
    Fingolo AC; de Morais VB; Costa SV; Corrêa CC; Lodi B; Santhiago M; Bernardes JS; Bufon CCB
    ACS Appl Bio Mater; 2021 Sep; 4(9):6682-6689. PubMed ID: 35006971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanocellulose-Based Conductive Membranes for Free-Standing Supercapacitors: A Review.
    Hsu HH; Zhong W
    Membranes (Basel); 2019 Jun; 9(6):. PubMed ID: 31242574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ferrocene-terminated monolayers covalently bound to hydrogen-terminated silicon surfaces. Toward the development of charge storage and communication devices.
    Fabre B
    Acc Chem Res; 2010 Dec; 43(12):1509-18. PubMed ID: 20949977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-Printable Nanocellulose-Based Functional Materials: Fundamentals and Applications.
    Finny AS; Popoola O; Andreescu S
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Critical Review on Modification Methods of Cement Composites with Nanocellulose and Reaction Conditions during Nanocellulose Production.
    Szafraniec M; Grabias-Blicharz E; Barnat-Hunek D; Landis EN
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation, Marriage Chemistry and Applications of Graphene Quantum Dots-Nanocellulose Composite: A Brief Review.
    Danial WH; Md Bahri NF; Abdul Majid Z
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant-Derived Nanocellulose as Structural and Mechanical Reinforcement of Freeze-Cast Chitosan Scaffolds for Biomedical Applications.
    Yin K; Divakar P; Wegst UGK
    Biomacromolecules; 2019 Oct; 20(10):3733-3745. PubMed ID: 31454234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research progress of smart response composite hydrogels based on nanocellulose.
    Hu S; Zhi Y; Shan S; Ni Y
    Carbohydr Polym; 2022 Jan; 275():118741. PubMed ID: 34742444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels.
    Chinga-Carrasco G; Syverud K
    J Biomater Appl; 2014 Sep; 29(3):423-32. PubMed ID: 24713295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Frontiers of Functionalized Nanocellulose-Based Composites and Their Application as Chemical Sensors.
    Norrrahim MNF; Knight VF; Nurazzi NM; Jenol MA; Misenan MSM; Janudin N; Kasim NAM; Shukor MFA; Ilyas RA; Asyraf MRM; Naveen J
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36298039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors.
    Baeg KJ; Caironi M; Noh YY
    Adv Mater; 2013 Aug; 25(31):4210-44. PubMed ID: 23761043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive review on nanocellulose: Recent developments, challenges and future prospects.
    Thomas P; Duolikun T; Rumjit NP; Moosavi S; Lai CW; Bin Johan MR; Fen LB
    J Mech Behav Biomed Mater; 2020 Oct; 110():103884. PubMed ID: 32957191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocellulose-graphene composites: A promising nanomaterial for flexible supercapacitors.
    Xing J; Tao P; Wu Z; Xing C; Liao X; Nie S
    Carbohydr Polym; 2019 Mar; 207():447-459. PubMed ID: 30600028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Progress on Nanocellulose Aerogels: Preparation, Modification, Composite Fabrication, Applications.
    Chen Y; Zhang L; Yang Y; Pang B; Xu W; Duan G; Jiang S; Zhang K
    Adv Mater; 2021 Mar; 33(11):e2005569. PubMed ID: 33538067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.