These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36105689)

  • 1. Micro-structures, nanomechanical properties and flight performance of three beetles with different folding ratios.
    Sun J; Li P; Yan Y; Song F; Xu N; Zhang Z
    Beilstein J Nanotechnol; 2022; 13():845-856. PubMed ID: 36105689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on Deployable Wings for MAVs Bioinspired by the Hind Wings of the Beetle
    Sun J; Wang W; Li P; Zhang Z
    Biomimetics (Basel); 2024 May; 9(6):. PubMed ID: 38921193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review: Learning from the flight of beetles.
    Song Z; Tong J; Pfleging W; Sun J
    Comput Biol Med; 2021 Jun; 133():104397. PubMed ID: 33895456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Functions of Phasic Wing-Tip Folding on Flapping-Wing Aerodynamics.
    Li Y; Li K; Fu F; Li Y; Li B
    Biomimetics (Basel); 2024 Mar; 9(3):. PubMed ID: 38534868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wing shape optimization design inspired by beetle hindwings in wind tunnel experiments.
    Liu C; Li P; Song F; Sun J
    Comput Biol Med; 2021 Aug; 135():104642. PubMed ID: 34284264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the Mechanical Performance of Bionic Wings Based on the Flapping Kinematics of Beetle Hindwings.
    Liu C; Shen T; Shen H; Ling M; Chen G; Lu B; Chen F; Wang Z
    Biomimetics (Basel); 2024 Jun; 9(6):. PubMed ID: 38921223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design optimization and wind tunnel investigation of a flapping system based on the flapping wing trajectories of a beetle's hindwings.
    Liu C; Li P; Song F; Stamhuis EJ; Sun J
    Comput Biol Med; 2022 Jan; 140():105085. PubMed ID: 34864303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined effects of wrinkled vein structures and nanomechanical properties on hind wing deformation.
    Song Z; Tong J; Yan Y; Wu W; Tian L; Sun J
    Micron; 2021 Jan; 140():102965. PubMed ID: 33130546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hydraulic mechanism in the hind wing veins of Cybister japonicus Sharp (order: Coleoptera).
    Sun J; Wu W; Ling M; Bhushan B; Tong J
    Beilstein J Nanotechnol; 2016; 7():904-13. PubMed ID: 27547607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characteristics of the rigid elytra in a bamboo weevil beetle Cyrtotrachelus buqueti.
    Li X; Zheng Y
    IET Nanobiotechnol; 2022 Sep; 16(7-8):273-283. PubMed ID: 35962575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a hydraulically-driven bionic folding wing.
    Zhang Z; Sun X; Du P; Sun J; Wu Y
    J Mech Behav Biomed Mater; 2018 Jun; 82():120-125. PubMed ID: 29579557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation Analysis of the Aerodynamic Performance of a Bionic Aircraft with Foldable Beetle Wings in Gliding Flight.
    Wang C; Ning Y; Wang X; Zhang J; Wang L
    Appl Bionics Biomech; 2020; 2020():8843360. PubMed ID: 33425005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Earwig-inspired foldable origami wing for micro air vehicle gliding.
    Ishiguro R; Kawasetsu T; Motoori Y; Paik J; Hosoda K
    Front Robot AI; 2023; 10():1255666. PubMed ID: 38023584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of aspect ratio and stroke pattern on force generation of a bat-inspired membrane wing.
    Schunk C; Swartz SM; Breuer KS
    Interface Focus; 2017 Feb; 7(1):20160083. PubMed ID: 28163875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of passive wing pitching on flight control in a hovering model insect and flapping-wing micro air vehicle.
    Hao J; Wu J; Zhang Y
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34450611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A wing-assisted running robot and implications for avian flight evolution.
    Peterson K; Birkmeyer P; Dudley R; Fearing RS
    Bioinspir Biomim; 2011 Dec; 6(4):046008. PubMed ID: 22004831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency of lift production in flapping and gliding flight of swifts.
    Henningsson P; Hedenström A; Bomphrey RJ
    PLoS One; 2014; 9(2):e90170. PubMed ID: 24587260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Aerodynamic Effect of Biomimetic Pigeon Feathered Wing on a 1-DoF Flapping Mechanism.
    Yeh SI; Hsu CY
    Biomimetics (Basel); 2024 Jan; 9(1):. PubMed ID: 38248610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flight kinematics of black-billed magpies and pigeons over a wide range of speeds.
    Tobalske B; Dial K
    J Exp Biol; 1996; 199(Pt 2):263-80. PubMed ID: 9317775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds.
    Klaassen van Oorschot B; Mistick EA; Tobalske BW
    J Exp Biol; 2016 Oct; 219(Pt 19):3146-3154. PubMed ID: 27473437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.