These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 36105706)

  • 1. The haustorium: The root of biotrophic fungal pathogens.
    Mapuranga J; Zhang L; Zhang N; Yang W
    Front Plant Sci; 2022; 13():963705. PubMed ID: 36105706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infection Strategies and Pathogenicity of Biotrophic Plant Fungal Pathogens.
    Mapuranga J; Zhang N; Zhang L; Chang J; Yang W
    Front Microbiol; 2022; 13():799396. PubMed ID: 35722337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotrophic Fungal Pathogens: a Critical Overview.
    Fei W; Liu Y
    Appl Biochem Biotechnol; 2023 Jan; 195(1):1-16. PubMed ID: 35951248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fungal effectors, the double edge sword of phytopathogens.
    Pradhan A; Ghosh S; Sahoo D; Jha G
    Curr Genet; 2021 Feb; 67(1):27-40. PubMed ID: 33146780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria.
    Micali CO; Neumann U; Grunewald D; Panstruga R; O'Connell R
    Cell Microbiol; 2011 Feb; 13(2):210-26. PubMed ID: 20880355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A component of the Sec61 ER protein transporting pore is required for plant susceptibility to powdery mildew.
    Zhang WJ; Hanisch S; Kwaaitaal M; Pedersen C; Thordal-Christensen H
    Front Plant Sci; 2013; 4():127. PubMed ID: 23720664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-talk of the biotrophic pathogen Claviceps purpurea and its host Secale cereale.
    Oeser B; Kind S; Schurack S; Schmutzer T; Tudzynski P; Hinsch J
    BMC Genomics; 2017 Apr; 18(1):273. PubMed ID: 28372538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges and progress towards understanding the role of effectors in plant-fungal interactions.
    Rafiqi M; Ellis JG; Ludowici VA; Hardham AR; Dodds PN
    Curr Opin Plant Biol; 2012 Aug; 15(4):477-82. PubMed ID: 22658704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acid uptake in rust fungi.
    Struck C
    Front Plant Sci; 2015; 6():40. PubMed ID: 25699068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Podosphaera xanthii haustorium, the fungal Trojan horse of cucurbit-powdery mildew interactions.
    Martínez-Cruz J; Romero D; Dávila JC; Pérez-García A
    Fungal Genet Biol; 2014 Oct; 71():21-31. PubMed ID: 25151531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotricum graminicola in maize.
    Vargas WA; Martín JM; Rech GE; Rivera LP; Benito EP; Díaz-Mínguez JM; Thon MR; Sukno SA
    Plant Physiol; 2012 Mar; 158(3):1342-58. PubMed ID: 22247271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating the Role of Effectors in Plant-Fungal Interactions: Progress and Challenges.
    Selin C; de Kievit TR; Belmonte MF; Fernando WG
    Front Microbiol; 2016; 7():600. PubMed ID: 27199930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcripts and tumors: regulatory and metabolic programming during biotrophic phytopathogenesis.
    Schmitz L; McCotter S; Kretschmer M; Kronstad JW; Heimel K
    F1000Res; 2018; 7():. PubMed ID: 30519451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel structural effector from rust fungi is capable of fibril formation.
    Kemen E; Kemen A; Ehlers A; Voegele R; Mendgen K
    Plant J; 2013 Sep; 75(5):767-80. PubMed ID: 23663217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant infection and the establishment of fungal biotrophy.
    Mendgen K; Hahn M
    Trends Plant Sci; 2002 Aug; 7(8):352-6. PubMed ID: 12167330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of Plant RAB GTPase-Mediated Membrane Trafficking Pathway at the Interface Between Plants and Obligate Biotrophic Pathogens.
    Inada N; Betsuyaku S; Shimada TL; Ebine K; Ito E; Kutsuna N; Hasezawa S; Takano Y; Fukuda H; Nakano A; Ueda T
    Plant Cell Physiol; 2016 Sep; 57(9):1854-64. PubMed ID: 27318282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interspecific Signaling Between the Parasitic Plant and the Host Plants Regulate Xylem Vessel Cell Differentiation in Haustoria of
    Kaga Y; Yokoyama R; Sano R; Ohtani M; Demura T; Kuroha T; Shinohara N; Nishitani K
    Front Plant Sci; 2020; 11():193. PubMed ID: 32231674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How eukaryotic filamentous pathogens evade plant recognition.
    Oliveira-Garcia E; Valent B
    Curr Opin Microbiol; 2015 Aug; 26():92-101. PubMed ID: 26162502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The plant-pathogen haustorial interface at a glance.
    Bozkurt TO; Kamoun S
    J Cell Sci; 2020 Mar; 133(5):. PubMed ID: 32132107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Haustorial Hairs Are Specialized Root Hairs That Support Parasitism in the Facultative Parasitic Plant Phtheirospermum japonicum.
    Cui S; Wakatake T; Hashimoto K; Saucet SB; Toyooka K; Yoshida S; Shirasu K
    Plant Physiol; 2016 Mar; 170(3):1492-503. PubMed ID: 26712864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.