These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 36105709)
1. CRISPR/Cas9 targeted inactivation of the kauniolide synthase in chicory results in accumulation of costunolide and its conjugates in taproots. Cankar K; Hakkert JC; Sevenier R; Campo E; Schipper B; Papastolopoulou C; Vahabi K; Tissier A; Bundock P; Bosch D Front Plant Sci; 2022; 13():940003. PubMed ID: 36105709 [TBL] [Abstract][Full Text] [Related]
2. Lactucin Synthase Inactivation Boosts the Accumulation of Anti-inflammatory 8-Deoxylactucin and Its Derivatives in Chicory ( Cankar K; Hakkert JC; Sevenier R; Papastolopoulou C; Schipper B; Baixinho JP; Fernández N; Matos MS; Serra AT; Santos CN; Vahabi K; Tissier A; Bundock P; Bosch D J Agric Food Chem; 2023 Apr; 71(15):6061-72. PubMed ID: 37036799 [TBL] [Abstract][Full Text] [Related]
3. Inactivation of the germacrene A synthase genes by CRISPR/Cas9 eliminates the biosynthesis of sesquiterpene lactones in Cichorium intybus L. Cankar K; Bundock P; Sevenier R; Häkkinen ST; Hakkert JC; Beekwilder J; van der Meer IM; de Both M; Bosch D Plant Biotechnol J; 2021 Dec; 19(12):2442-2453. PubMed ID: 34270859 [TBL] [Abstract][Full Text] [Related]
4. Kauniolide synthase is a P450 with unusual hydroxylation and cyclization-elimination activity. Liu Q; Beyraghdar Kashkooli A; Manzano D; Pateraki I; Richard L; Kolkman P; Lucas MF; Guallar V; de Vos RCH; Franssen MCR; van der Krol A; Bouwmeester H Nat Commun; 2018 Nov; 9(1):4657. PubMed ID: 30405138 [TBL] [Abstract][Full Text] [Related]
5. Biosynthesis of costunolide, dihydrocostunolide, and leucodin. Demonstration of cytochrome p450-catalyzed formation of the lactone ring present in sesquiterpene lactones of chicory. de Kraker JW; Franssen MC; Joerink M; de Groot A; Bouwmeester HJ Plant Physiol; 2002 May; 129(1):257-68. PubMed ID: 12011356 [TBL] [Abstract][Full Text] [Related]
6. Identification and characterization of CYP71 subclade cytochrome P450 enzymes involved in the biosynthesis of bitterness compounds in De Bruyn C; Ruttink T; Lacchini E; Rombauts S; Haegeman A; De Keyser E; Van Poucke C; Desmet S; Jacobs TB; Eeckhaut T; Goossens A; Van Laere K Front Plant Sci; 2023; 14():1200253. PubMed ID: 37426959 [TBL] [Abstract][Full Text] [Related]
7. A comparison of three different delivery methods for achieving CRISPR/Cas9 mediated genome editing in Salvagnin U; Unkel K; Sprink T; Bundock P; Sevenier R; Bogdanović M; Todorović S; Cankar K; Hakkert JC; Schijlen E; Nieuwenhuis R; Hingsamer M; Kulmer V; Kernitzkyi M; Bosch D; Martens S; Malnoy M Front Plant Sci; 2023; 14():1111110. PubMed ID: 37123849 [TBL] [Abstract][Full Text] [Related]
8. Silencing of germacrene A synthase genes reduces guaianolide oxalate content in Bogdanović M; Cankar K; Dragićević M; Bouwmeester H; Beekwilder J; Simonović A; Todorović S GM Crops Food; 2020; 11(1):54-66. PubMed ID: 31668117 [TBL] [Abstract][Full Text] [Related]
9. In vitro analysis of the anthelmintic activity of forage chicory (Cichorium intybus L.) sesquiterpene lactones against a predominantly Haemonchus contortus egg population. Foster JG; Cassida KA; Turner KE Vet Parasitol; 2011 Aug; 180(3-4):298-306. PubMed ID: 21477927 [TBL] [Abstract][Full Text] [Related]
10. Reconstitution of the costunolide biosynthetic pathway in yeast and Nicotiana benthamiana. Liu Q; Majdi M; Cankar K; Goedbloed M; Charnikhova T; Verstappen FW; de Vos RC; Beekwilder J; van der Krol S; Bouwmeester HJ PLoS One; 2011; 6(8):e23255. PubMed ID: 21858047 [TBL] [Abstract][Full Text] [Related]
11. Metabolite profiling of sesquiterpene lactones from Lactuca species. Major latex components are novel oxalate and sulfate conjugates of lactucin and its derivatives. Sessa RA; Bennett MH; Lewis MJ; Mansfield JW; Beale MH J Biol Chem; 2000 Sep; 275(35):26877-84. PubMed ID: 10858433 [TBL] [Abstract][Full Text] [Related]
13. Establishment of CRISPR/Cas9 Genome Editing in Witloof ( De Bruyn C; Ruttink T; Eeckhaut T; Jacobs T; De Keyser E; Goossens A; Van Laere K Front Genome Ed; 2020; 2():604876. PubMed ID: 34713228 [No Abstract] [Full Text] [Related]
14. (+)-Germacrene A biosynthesis . The committed step in the biosynthesis of bitter sesquiterpene lactones in chicory. de Kraker JW ; Franssen MC; de Groot A ; Konig WA; Bouwmeester HJ Plant Physiol; 1998 Aug; 117(4):1381-92. PubMed ID: 9701594 [TBL] [Abstract][Full Text] [Related]
15. Influence of cultivation site on sesquiterpene lactone composition of forage chicory (Cichorium intybus L.). Foster JG; Clapham WM; Belesky DP; Labreveux M; Hall MH; Sanderson MA J Agric Food Chem; 2006 Mar; 54(5):1772-8. PubMed ID: 16506832 [TBL] [Abstract][Full Text] [Related]
16. CRISPR/Cas9-Targeted Mutagenesis of Domont J; Thiblet M; Etienne A; Santos HAD; Cadalen T; Hance P; Gagneul D; Hilbert JL; Rambaud C Front Biosci (Landmark Ed); 2023 Sep; 28(9):201. PubMed ID: 37796686 [TBL] [Abstract][Full Text] [Related]
18. Low Oral Bioavailability and Partial Gut Microbiotic and Phase II Metabolism of Brussels/Witloof Chicory Sesquiterpene Lactones in Healthy Humans. Weng H; He L; Zheng J; Li Q; Liu X; Wang D Nutrients; 2020 Nov; 12(12):. PubMed ID: 33260567 [TBL] [Abstract][Full Text] [Related]
19. CYP71BL9, the missing link in costunolide synthesis of sunflower. Frey M; Klaiber I; Conrad J; Spring O Phytochemistry; 2020 Sep; 177():112430. PubMed ID: 32516579 [TBL] [Abstract][Full Text] [Related]
20. Insights into the Sesquiterpenoid Pathway by Metabolic Profiling and Testone G; Mele G; Di Giacomo E; Gonnella M; Renna M; Tenore GC; Nicolodi C; Frugis G; Iannelli MA; Arnesi G; Schiappa A; Giannino D Front Plant Sci; 2016; 7():1676. PubMed ID: 27877190 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]