These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 3610595)

  • 1. Plant genetic resources: prediction by isozyme markers and ecology.
    Nevo E
    Isozymes Curr Top Biol Med Res; 1987; 16():247-67. PubMed ID: 3610595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isozyme assessment of plant genetic resources.
    Brown AH; Clegg MT
    Isozymes Curr Top Biol Med Res; 1983; 11():285-95. PubMed ID: 6642991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecological genomics of natural plant populations: the Israeli perspective.
    Nevo E
    Methods Mol Biol; 2009; 513():321-44. PubMed ID: 19347652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isozyme monitoring of genetic variation in Lycopersicon.
    Rick CM; Tanksley SD
    Isozymes Curr Top Biol Med Res; 1983; 11():269-84. PubMed ID: 6642990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development and application of molecular markers for abiotic stress tolerance in barley.
    Forster BP; Ellis RP; Thomas WT; Newton AC; Tuberosa R; This D; el-Enein RA; Bahri MH; Ben Salem M
    J Exp Bot; 2000 Jan; 51(342):19-27. PubMed ID: 10938792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular evolutionary genetics of isozymes: pattern, theory, and application.
    Nevo E
    Prog Clin Biol Res; 1990; 344():701-42. PubMed ID: 1975442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of causal relationships among traits related to drought resistance in Stylosanthes scabra using QTL analysis.
    Thumma BR; Naidu BP; Chandra A; Cameron DF; Bahnisch LM; Liu C
    J Exp Bot; 2001 Feb; 52(355):203-14. PubMed ID: 11283164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of genomics to molecular breeding of wheat and barley.
    Varshney RK; Langridge P; Graner A
    Adv Genet; 2007; 58():121-55. PubMed ID: 17452248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel.
    Fahima T; Röder MS; Wendehake K; Kirzhner VM; Nevo E
    Theor Appl Genet; 2002 Jan; 104(1):17-29. PubMed ID: 12579424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-density mapping and comparative analysis of agronomically important traits on wheat chromosome 3A.
    Dilbirligi M; Erayman M; Campbell BT; Randhawa HS; Baenziger PS; Dweikat I; Gill KS
    Genomics; 2006 Jul; 88(1):74-87. PubMed ID: 16624516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic dissection of drought resistance in durum wheat x wild emmer wheat recombinant inbreed line population.
    Peleg Z; Fahima T; Krugman T; Abbo S; Yakir D; Korol AB; Saranga Y
    Plant Cell Environ; 2009 Jul; 32(7):758-79. PubMed ID: 19220786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecological-genomic diversity of microsatellites in wild barley, Hordeum spontaneum, populations in Jordan.
    Baek HJ; Beharav A; Nevo E
    Theor Appl Genet; 2003 Feb; 106(3):397-410. PubMed ID: 12589539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of QTLs for harvest index and source-sink characters in a DH population of rice (Oryza sativa L.).
    Mao BB; Cai WJ; Zhang ZH; Hu ZL; Li P; Zhu LH; Zhu YG
    Yi Chuan Xue Bao; 2003 Dec; 30(12):1118-26. PubMed ID: 14986429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative trait locus mapping of increased Fusarium head blight susceptibility associated with a wild emmer wheat chromosome.
    Garvin DF; Stack RW; Hansen JM
    Phytopathology; 2009 Apr; 99(4):447-52. PubMed ID: 19271987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of space in genetic-environmental relationships when environmental heterogeneity and seed dispersal occur at similar scale.
    Volis S; Anikster Y; Olsvig-Whittaker L; Mendlinger S
    Am Nat; 2004 Feb; 163(2):312-27. PubMed ID: 14970930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative genetic and QTL mapping in sorghum and maize.
    Lee M
    Symp Soc Exp Biol; 1996; 50():31-8. PubMed ID: 9039432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of a linkage map and QTL analysis of horticultural traits for watermelon [Citrullus lanatus (THUNB.) MATSUM & NAKAI] using RAPD, RFLP and ISSR markers.
    Hashizume T; Shimamoto I; Hirai M
    Theor Appl Genet; 2003 Mar; 106(5):779-85. PubMed ID: 12647050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Analysis of the effects of parental genotypes of rye lines on the development of quantitative traits in primary octaploid triticale. Plant height].
    Tikhenko HD; Tsvetkova NV; Voĭlokov AV
    Genetika; 2003 Jan; 39(1):64-9. PubMed ID: 12624935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between hordatine accumulation, environmental factors and genetic diversity in wild barley (Hordeum spontaneum C. Koch) accessions from the Near East Fertile Crescent.
    Batchu AK; Zimmermann D; Schulze-Lefert P; Koprek T
    Genetica; 2006 May; 127(1-3):87-99. PubMed ID: 16850216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yield-enhancing quantitative trait loci (QTLs) from wild species.
    Swamy BP; Sarla N
    Biotechnol Adv; 2008; 26(1):106-20. PubMed ID: 17949936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.