BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 36106730)

  • 21. Resonance assignments of cytochrome MtoD from the extracellular electron uptake pathway of sideroxydans lithotrophicus ES-1.
    Coelho A; Silva JM; Cantini F; Piccioli M; Louro RO; Paquete CM
    Biomol NMR Assign; 2024 Jun; ():. PubMed ID: 38844727
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The roles of CymA in support of the respiratory flexibility of Shewanella oneidensis MR-1.
    Marritt SJ; McMillan DG; Shi L; Fredrickson JK; Zachara JM; Richardson DJ; Jeuken LJ; Butt JN
    Biochem Soc Trans; 2012 Dec; 40(6):1217-21. PubMed ID: 23176457
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1.
    Schuetz B; Schicklberger M; Kuermann J; Spormann AM; Gescher J
    Appl Environ Microbiol; 2009 Dec; 75(24):7789-96. PubMed ID: 19837833
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of Bacterial Extracellular Electron Exchange.
    White GF; Edwards MJ; Gomez-Perez L; Richardson DJ; Butt JN; Clarke TA
    Adv Microb Physiol; 2016; 68():87-138. PubMed ID: 27134022
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial Fe(II) oxidation by Sideroxydans lithotrophicus ES-1 in the presence of Schlöppnerbrunnen fen-derived humic acids.
    Hädrich A; Taillefert M; Akob DM; Cooper RE; Litzba U; Wagner FE; Nietzsche S; Ciobota V; Rösch P; Popp J; Küsel K
    FEMS Microbiol Ecol; 2019 Apr; 95(4):. PubMed ID: 30874727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes.
    Summers ZM; Gralnick JA; Bond DR
    mBio; 2013 Jan; 4(1):e00420-12. PubMed ID: 23362318
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural modeling of an outer membrane electron conduit from a metal-reducing bacterium suggests electron transfer via periplasmic redox partners.
    Edwards MJ; White GF; Lockwood CW; Lawes MC; Martel A; Harris G; Scott DJ; Richardson DJ; Butt JN; Clarke TA
    J Biol Chem; 2018 May; 293(21):8103-8112. PubMed ID: 29636412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metagenomic Analyses of the Autotrophic Fe(II)-Oxidizing, Nitrate-Reducing Enrichment Culture KS.
    He S; Tominski C; Kappler A; Behrens S; Roden EE
    Appl Environ Microbiol; 2016 May; 82(9):2656-2668. PubMed ID: 26896135
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genomic Analyses of the Quinol Oxidases and/or Quinone Reductases Involved in Bacterial Extracellular Electron Transfer.
    Zhong Y; Shi L
    Front Microbiol; 2018; 9():3029. PubMed ID: 30619124
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein-protein interaction regulates the direction of catalysis and electron transfer in a redox enzyme complex.
    McMillan DG; Marritt SJ; Firer-Sherwood MA; Shi L; Richardson DJ; Evans SD; Elliott SJ; Butt JN; Jeuken LJ
    J Am Chem Soc; 2013 Jul; 135(28):10550-6. PubMed ID: 23799249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metal Reduction and Protein Secretion Genes Required for Iodate Reduction by Shewanella oneidensis.
    Toporek YJ; Mok JK; Shin HD; Lee BD; Lee MH; DiChristina TJ
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30446562
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of MtoD from Sideroxydans lithotrophicus: a cytochrome c electron shuttle used in lithoautotrophic growth.
    Beckwith CR; Edwards MJ; Lawes M; Shi L; Butt JN; Richardson DJ; Clarke TA
    Front Microbiol; 2015; 6():332. PubMed ID: 25972843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for Horizontal and Vertical Transmission of Mtr-Mediated Extracellular Electron Transfer among the
    Baker IR; Conley BE; Gralnick JA; Girguis PR
    mBio; 2021 Feb; 13(1):e0290421. PubMed ID: 35100867
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Ferrous Iron Exporter Mediates Iron Resistance in Shewanella oneidensis MR-1.
    Bennett BD; Brutinel ED; Gralnick JA
    Appl Environ Microbiol; 2015 Nov; 81(22):7938-44. PubMed ID: 26341213
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Outer-membrane cytochrome-independent reduction of extracellular electron acceptors in Shewanella oneidensis.
    Bücking C; Piepenbrock A; Kappler A; Gescher J
    Microbiology (Reading); 2012 Aug; 158(Pt 8):2144-2157. PubMed ID: 22493303
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lysine-91 of the tetraheme c-type cytochrome CymA is essential for quinone interaction and arsenate respiration in Shewanella sp. strain ANA-3.
    Zargar K; Saltikov CW
    Arch Microbiol; 2009 Nov; 191(11):797-806. PubMed ID: 19760266
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence for function overlapping of CymA and the cytochrome bc1 complex in the Shewanella oneidensis nitrate and nitrite respiration.
    Fu H; Jin M; Ju L; Mao Y; Gao H
    Environ Microbiol; 2014 Oct; 16(10):3181-95. PubMed ID: 24650148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1.
    Myers CR; Myers JM
    J Bacteriol; 1997 Feb; 179(4):1143-52. PubMed ID: 9023196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR; Holmes DE; Nevin KP
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of two domains and distal histidine ligands to the four haems in the bacterial c-type cytochrome NapC; the prototype connector between quinol/quinone and periplasmic oxido-reductases.
    Cartron ML; Roldán MD; Ferguson SJ; Berks BC; Richardson DJ
    Biochem J; 2002 Dec; 368(Pt 2):425-32. PubMed ID: 12186631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.