These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36106792)

  • 1. Low-Temperature Stability and Sensing Performance of Mid-Infrared Bloch Surface Waves on a One-Dimensional Photonic Crystal.
    Occhicone A; Polito R; Michelotti F; Ortolani M; Baldassarre L; Pea M; Sinibaldi A; Notargiacomo A; Cibella S; Mattioli F; Roy P; Brubach JB; Calvani P; Nucara A
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43853-43860. PubMed ID: 36106792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral Characterization of Mid-Infrared Bloch Surface Waves Excited on a Truncated 1D Photonic Crystal.
    Occhicone A; Pea M; Polito R; Giliberti V; Sinibaldi A; Mattioli F; Cibella S; Notargiacomo A; Nucara A; Biagioni P; Michelotti F; Ortolani M; Baldassarre L
    ACS Photonics; 2021 Jan; 8(1):350-359. PubMed ID: 33585665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors.
    Sinibaldi A; Descrovi E; Giorgis F; Dominici L; Ballarini M; Mandracci P; Danz N; Michelotti F
    Biomed Opt Express; 2012 Oct; 3(10):2405-10. PubMed ID: 23082282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bloch surface wave resonance in photonic crystal fibers: towards ultra-wide range refractive index sensors.
    Gonzalez-Valencia E; Herrera RA; Torres P
    Opt Express; 2019 Mar; 27(6):8236-8245. PubMed ID: 31052645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bloch waves at the surface of a single-layer coating D-shaped photonic crystal fiber.
    Gonzalez-Valencia E; Del Villar I; Torres P
    Opt Lett; 2020 May; 45(9):2547-2550. PubMed ID: 32356813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bloch Surface Wave-Coupled Emission from Quantum Dots by Ensemble and Single Molecule Spectroscopy.
    Ray K; Badugu R; Lakowicz JR
    RSC Adv; 2015; 5(67):54403-54411. PubMed ID: 26523227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-sensitive refractive index sensing enabled by a dramatic ellipsometric phase change at the band edge in a one-dimensional photonic crystal.
    Wu F; Liu D; Li Y; Li H
    Opt Express; 2022 Aug; 30(16):29030-29043. PubMed ID: 36299088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimode Interference of Bloch Surface Electromagnetic Waves.
    Safronov KR; Gulkin DN; Antropov IM; Abrashitova KA; Bessonov VO; Fedyanin AA
    ACS Nano; 2020 Aug; 14(8):10428-10437. PubMed ID: 32806066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulations on strong coupling of Bloch surface waves and excitons in dielectric-semiconductor multilayers.
    Laurio CM; Katsuki H; Yanagi H
    J Phys Condens Matter; 2020 Jul; 32(41):. PubMed ID: 32544899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bloch Surface Wave-Coupled Emission at Ultra-Violet Wavelengths.
    Badugu R; Mao J; Blair S; Zhang D; Descrovi E; Angelini A; Huo Y; Lakowicz JR
    J Phys Chem C Nanomater Interfaces; 2016 Dec; 120(50):28727-28734. PubMed ID: 28725334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Optical Sensing Based on Phase Shift of Waves Supported by a One-Dimensional Photonic Crystal.
    Kaňok R; Hlubina P; Gembalová L; Ciprian D
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensing concept based on Bloch surface waves and wavelength interrogation.
    Gryga M; Ciprian D; Hlubina P
    Opt Lett; 2020 Mar; 45(5):1096-1099. PubMed ID: 32108779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refractometric sensitivity of Bloch surface waves: perturbation theory calculation and experimental validation.
    Dias BS; de Almeida JMMM; Coelho LCC
    Opt Lett; 2023 Feb; 48(3):727-730. PubMed ID: 36723574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bloch surface wave structures for high sensitivity detection and compact waveguiding.
    Khan MU; Corbett B
    Sci Technol Adv Mater; 2016; 17(1):398-409. PubMed ID: 27877891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From Bloch surface waves to cavity-mode resonances reaching an ultrahigh sensitivity and a figure of merit.
    Gryga M; Ciprian D; Hlubina P
    Opt Lett; 2023 Nov; 48(22):6068-6071. PubMed ID: 37966791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical Model for a Highly Sensitive Near Infrared Biosensor Based on Bloch Surface Wave with Dirac Semimetal.
    Zheng Q; Liu Y; Lu W; Dai X; Tian H; Jiang L
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Bloch wave excitation platform based on few-layer photonic crystal deposited on D-shaped optical fiber.
    Gonzalez-Valencia E; Villar ID; Torres P
    Sci Rep; 2021 May; 11(1):11266. PubMed ID: 34050199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refractive index sensor based on graphene-coated photonic surface-wave resonance.
    Yang Q; Qin L; Cao G; Zhang C; Li X
    Opt Lett; 2018 Feb; 43(4):639-642. PubMed ID: 29444041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of thickness disorder on the performance of photonic crystal surface wave sensors.
    Anopchenko A; Occhicone A; Rizzo R; Sinibaldi A; Figliozzi G; Danz N; Munzert P; Michelotti F
    Opt Express; 2016 Apr; 24(7):7728-42. PubMed ID: 27137058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Wave Enhanced Sensing in the Terahertz Spectral Range: Modalities, Materials, and Perspectives.
    Poulin M; Giannacopoulos S; Skorobogatiy M
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31847130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.