These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36107075)

  • 1. Confinement and absorption layer free nanosecond laser shock peening of tungsten and its alloy.
    Banerjee S; Spear J
    Opt Lett; 2022 Sep; 47(18):4736-4739. PubMed ID: 36107075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser shock peening of tungsten and its dependency on polarisation of light for induced compressive stresses.
    Banerjee S; Spear J; Dalton PJ
    Opt Express; 2022 Aug; 30(18):32084-32096. PubMed ID: 36242277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Conditions after LASER Shock Peening of Steel and Aluminum Alloys Using Ultrafast Laser Pulses.
    Schubnell J; Carl ER; Sarmast A; Hinterstein M; Preußner J; Seifert M; Kaufmann C; Rußbüldt P; Schulte J
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Prediction of the Effect of Laser Shock Peening on Residual Stress and Fatigue Life of Ti-6Al-4V Titanium Alloy.
    Ouyang P; Luo X; Dong Z; Zhang S
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser Shock Peening of SiCp/2009Al Composites: Microstructural Evolution, Residual Stress and Fatigue Behavior.
    Sun R; Cao Z; Zhang Y; Zhang H; Yu Y; Che Z; Wu J; Zou S; Guo W
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33652572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Study on Laser Shock Peening of Pure Al Correlating with Laser Shock Wave.
    Wang M; Wang C; Tao X; Zhou Y
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and optimization of Laser Shock Repeated Dense Peening (LSRDP) using most advanced laser architectures.
    Rondepierre A; Casagrande O; Rouchausse Y; Castelnau O; Berthe L
    Opt Express; 2022 Mar; 30(7):10528-10546. PubMed ID: 35473017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological and mechanical response of laser shock peening orthopaedic titanium alloy (Ti-6Al-7Nb).
    Shen X; Shukla P; Nayak S; Gopal V; Subramanian P; Sarah Benjamin A; Kalainathan S
    Proc Inst Mech Eng H; 2022 Aug; 236(8):1169-1187. PubMed ID: 35735136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cavitation Erosion Prevention Using Laser Shock Peening: Development of a Predictive Evaluation System.
    Li W; Yao H; Ding Z; Zhou Y; Wei P; Yue J; Su W; Zhu W
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening.
    Gujba AK; Medraj M
    Materials (Basel); 2014 Dec; 7(12):7925-7974. PubMed ID: 28788284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Residual Stress on S-N Curves and Fracture Morphology of Ti6Al4V Titanium Alloy after Laser Shock Peening without Protective Coating.
    Pan X; Li X; Zhou L; Feng X; Luo S; He W
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31752327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Microstructure, Residual Stress and Fatigue Performance of Laser Metal Deposited TC17 Alloy Subjected to Laser Shock Peening.
    An Z; He W; Zhou X; Zhou L; Nie X
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact-Sliding Tribology Behavior of TC17 Alloy Treated by Laser Shock Peening.
    Yin M; Wang W; He W; Cai Z
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30018270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enabling High-Performance Surfaces of Biodegradable Magnesium Alloys via Femtosecond Laser Shock Peening with Ultralow Pulse Energy.
    Wang W; Hung CY; Howe L; Chen J; Wang K; Ho VX; Lenahan S; Murayama M; Vinh NQ; Cai W
    ACS Appl Bio Mater; 2021 Nov; 4(11):7903-7912. PubMed ID: 35006771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A parametric neutron Bragg edge imaging study of additively manufactured samples treated by laser shock peening.
    Busi M; Kalentics N; Morgano M; Griffiths S; Tremsin AS; Shinohara T; Logé R; Leinenbach C; Strobl M
    Sci Rep; 2021 Jul; 11(1):14919. PubMed ID: 34290334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of laser shock peening on the corrosion behavior and biocompatibility of a nickel-titanium alloy.
    Zhang R; Mankoci S; Walters N; Gao H; Zhang H; Hou X; Qin H; Ren Z; Zhou X; Doll GL; Martini A; Sahai N; Dong Y; Ye C
    J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1854-1863. PubMed ID: 30550636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical Simulation on Laser Shock Peening of B
    Wang X; Chen B; Zhang F; Liu L; Xu S; Mei H; Lai X; Ren L
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Ultrasonic Shot Peening and Laser Shock Peening on the Microstructure and Microhardness of IN738LC Alloys.
    Liu S; Kim Y; Jung J; Bae S; Jeong S; Shin K
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of Fatigue Life of GH3039 Superalloy by Laser Shock Peening.
    Tang Y; Ge M; Zhang Y; Wang T; Zhou W
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32878304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact, diode-pumped, unstable cavity Yb:YAG laser and its application in laser shock peening.
    Körner J; Zulić S; Reiter J; Lenski M; Hein J; Bödefeld R; Rostohar D; Mocek T; Kaluza MC
    Opt Express; 2021 May; 29(10):15724-15732. PubMed ID: 33985268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.