These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36107217)

  • 1. Can we use peripheral vision to create a visuospatial map for compensatory reach-to-grasp reactions?
    Williams L; Miyasike-daSilva V; Staines WR; Prentice SD; McIlroy WE
    Exp Brain Res; 2022 Oct; 240(10):2739-2746. PubMed ID: 36107217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of peripheral vision in rapid perturbation-evoked reach-to-grasp reactions.
    Akram SB; Miyasike-daSilva V; Van Ooteghem K; McIlroy WE
    Exp Brain Res; 2013 Sep; 229(4):609-19. PubMed ID: 23811736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initiation of rapid reach-and-grasp balance reactions: is a pre-formed visuospatial map used in controlling the initial arm trajectory?
    Ghafouri M; McIlroy WE; Maki BE
    Exp Brain Res; 2004 Apr; 155(4):532-6. PubMed ID: 14985902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of peripheral vision to guide perturbation-evoked reach-to-grasp balance-recovery reactions.
    King EC; McKay SM; Cheng KC; Maki BE
    Exp Brain Res; 2010 Nov; 207(1-2):105-18. PubMed ID: 20957351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaching to recover balance in unpredictable circumstances: is online visual control of the reach-to-grasp reaction necessary or sufficient?
    Cheng KC; McKay SM; King EC; Maki BE
    Exp Brain Res; 2012 May; 218(4):589-99. PubMed ID: 22411582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallels in control of voluntary and perturbation-evoked reach-to-grasp movements: EMG and kinematics.
    Gage WH; Zabjek KF; Hill SW; McIlroy WE
    Exp Brain Res; 2007 Aug; 181(4):627-37. PubMed ID: 17487477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do aging and dual-tasking impair the capacity to store and retrieve visuospatial information needed to guide perturbation-evoked reach-to-grasp reactions?
    Cheng KC; Pratt J; Maki BE
    PLoS One; 2013; 8(11):e79401. PubMed ID: 24223942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does aging impair the capacity to use stored visuospatial information or online visual control to guide reach-to-grasp reactions evoked by unpredictable balance perturbation?
    Cheng KC; McKay SM; King EC; Maki BE
    J Gerontol A Biol Sci Med Sci; 2012 Nov; 67(11):1238-45. PubMed ID: 22511290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor preparation for compensatory reach-to-grasp responses when viewing a wall-mounted safety handle.
    Bolton DAE; Cole DM; Butler B; Mansour M; Rydalch G; McDannald DW; Schwartz SE
    Cortex; 2019 Aug; 117():135-146. PubMed ID: 30974321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reach and Grasp reconfigurations reveal that proprioception assists reaching and hapsis assists grasping in peripheral vision.
    Hall LA; Karl JM; Thomas BL; Whishaw IQ
    Exp Brain Res; 2014 Sep; 232(9):2807-19. PubMed ID: 24792500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of handrail predictability on compensatory arm reactions in response to a loss of balance.
    Weaver TB; Tokuno CD
    Gait Posture; 2013 Jun; 38(2):293-8. PubMed ID: 23280124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient inhibition of primary motor cortex suppresses hand muscle responses during a reactive reach to grasp.
    Bolton DAE; Patel R; Staines WR; McIlroy WE
    Neurosci Lett; 2011 Oct; 504(2):83-87. PubMed ID: 21925570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resolving conflicts in task demands during balance recovery: does holding an object inhibit compensatory grasping?
    Bateni H; Zecevic A; McIlroy WE; Maki BE
    Exp Brain Res; 2004 Jul; 157(1):49-58. PubMed ID: 14758453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaching and grasping with restricted peripheral vision.
    González-Alvarez C; Subramanian A; Pardhan S
    Ophthalmic Physiol Opt; 2007 May; 27(3):265-74. PubMed ID: 17470239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Haptic grasping configurations in early infancy reveal different developmental profiles for visual guidance of the Reach versus the Grasp.
    Karl JM; Whishaw IQ
    Exp Brain Res; 2014 Oct; 232(10):3301-16. PubMed ID: 24969613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gender differences in non-standard mapping tasks: A kinematic study using pantomimed reach-to-grasp actions.
    Copley-Mills J; Connolly JD; Cavina-Pratesi C
    Cortex; 2016 Sep; 82():244-254. PubMed ID: 27410715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation of reach-to-grasp movement in response to force perturbations.
    Rand MK; Shimansky Y; Stelmach GE; Bloedel JR
    Exp Brain Res; 2004 Jan; 154(1):50-65. PubMed ID: 14530893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of aperture closure initiation during reach-to-grasp movements under manipulations of visual feedback and trunk involvement in Parkinson's disease.
    Rand MK; Lemay M; Squire LM; Shimansky YP; Stelmach GE
    Exp Brain Res; 2010 Mar; 201(3):509-25. PubMed ID: 19902195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of handrail height and age on the timing and speed of reach-to-grasp balance reactions during slope descent.
    Komisar V; Maki BE; Novak AC
    Appl Ergon; 2019 Nov; 81():102873. PubMed ID: 31422250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of spatial-memory decay and dual-task interference on perturbation-evoked reach-to-grasp reactions in the absence of online visual feedback.
    Cheng KC; Pratt J; Maki BE
    Hum Mov Sci; 2013 Apr; 32(2):328-42. PubMed ID: 23635599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.