These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 36107271)

  • 1. Diabetes-induced chronic heart failure is due to defects in calcium transporting and regulatory contractile proteins: cellular and molecular evidence.
    Rupee S; Rupee K; Singh RB; Hanoman C; Ismail AMA; Smail M; Singh J
    Heart Fail Rev; 2023 May; 28(3):627-644. PubMed ID: 36107271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperglycemia-induced cardiac contractile dysfunction in the diabetic heart.
    Singh RM; Waqar T; Howarth FC; Adeghate E; Bidasee K; Singh J
    Heart Fail Rev; 2018 Jan; 23(1):37-54. PubMed ID: 29192360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of contractile proteins in diabetic heart.
    Malhotra A; Sanghi V
    Cardiovasc Res; 1997 Apr; 34(1):34-40. PubMed ID: 9217870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of cardiac dysfunction in diabetic cardiomyopathy: molecular abnormalities and phenotypical variants.
    Prandi FR; Evangelista I; Sergi D; Palazzuoli A; Romeo F
    Heart Fail Rev; 2023 May; 28(3):597-606. PubMed ID: 35001338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelial Dysfunction and Diabetic Cardiomyopathy.
    Wang M; Li Y; Li S; Lv J
    Front Endocrinol (Lausanne); 2022; 13():851941. PubMed ID: 35464057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural changes in the myocardium during diabetes-induced cardiomyopathy.
    Adeghate E; Singh J
    Heart Fail Rev; 2014 Jan; 19(1):15-23. PubMed ID: 23467937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of intracellular Ca2+ in the heart during diabetes.
    Pierce GN; Russell JC
    Cardiovasc Res; 1997 Apr; 34(1):41-7. PubMed ID: 9217871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of hyperglycaemia in the development of diabetic cardiomyopathy.
    El Hayek MS; Ernande L; Benitah JP; Gomez AM; Pereira L
    Arch Cardiovasc Dis; 2021 Nov; 114(11):748-760. PubMed ID: 34627704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen Sulfide Regulates SERCA2a Ubiquitylation via Muscle RING Finger-1 S-Sulfhydration to Affect Cardiac Contractility in db/db Mice.
    Peng S; Zhao D; Li Q; Wang M; Zhang S; Pang K; Huang J; Lu F; Chen H; Zhang W
    Cells; 2022 Nov; 11(21):. PubMed ID: 36359861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial dysfunction in diabetic cardiomyopathy.
    Duncan JG
    Biochim Biophys Acta; 2011 Jul; 1813(7):1351-9. PubMed ID: 21256163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered expression of titin and contractile proteins in failing human myocardium.
    Hein S; Scholz D; Fujitani N; Rennollet H; Brand T; Friedl A; Schaper J
    J Mol Cell Cardiol; 1994 Oct; 26(10):1291-306. PubMed ID: 7869390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diabetic Cardiomyopathy: From Mechanism to Management in a Nutshell.
    Khan S; Ahmad SS; Kamal MA
    Endocr Metab Immune Disord Drug Targets; 2021; 21(2):268-281. PubMed ID: 32735531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathophysiology and Treatment of Diabetic Cardiomyopathy and Heart Failure in Patients with Diabetes Mellitus.
    Nakamura K; Miyoshi T; Yoshida M; Akagi S; Saito Y; Ejiri K; Matsuo N; Ichikawa K; Iwasaki K; Naito T; Namba Y; Yoshida M; Sugiyama H; Ito H
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional and Molecular Characterisation of Heart Failure Progression in Mice and the Role of Myosin Regulatory Light Chains in the Recovery of Cardiac Muscle Function.
    Markandran K; Yu H; Song W; Lam DTUH; Madathummal MC; Ferenczi MA
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac sodium-calcium exchange and efficient excitation-contraction coupling: implications for heart disease.
    Goldhaber JI; Philipson KD
    Adv Exp Med Biol; 2013; 961():355-64. PubMed ID: 23224894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular and molecular aspects of contractile dysfunction in heart failure.
    Mittmann C; Eschenhagen T; Scholz H
    Cardiovasc Res; 1998 Aug; 39(2):267-75. PubMed ID: 9798511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diabetic Cardiomyopathy.
    Dillmann WH
    Circ Res; 2019 Apr; 124(8):1160-1162. PubMed ID: 30973809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium Homeostasis in Ventricular Myocytes of Diabetic Cardiomyopathy.
    Al Kury LT
    J Diabetes Res; 2020; 2020():1942086. PubMed ID: 33274235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium regulatory proteins and their alteration by transgenic approaches.
    Dillmann WH
    Am J Cardiol; 1999 Jun; 83(12A):89H-91H. PubMed ID: 10750595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Azelnidipine prevents cardiac dysfunction in streptozotocin-diabetic rats by reducing intracellular calcium accumulation, oxidative stress and apoptosis.
    Kain V; Kumar S; Sitasawad SL
    Cardiovasc Diabetol; 2011 Nov; 10():97. PubMed ID: 22054019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.