These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 361073)

  • 1. Inhibition of transfer RNA function by replacement of uridine and uridine-derived nucleosides with 5-fluorouridine.
    Ramberg ES; Ishaq M; Rulf S; Moeller B; Horowitz J
    Biochemistry; 1978 Sep; 17(19):3978-85. PubMed ID: 361073
    [No Abstract]   [Full Text] [Related]  

  • 2. Isolation and partial characterization of Escherichia coli valine transfer RNA with uridine-derived residues replaced by 5-fluorouridine.
    Horowitz J; Ou CN; Ishaq M
    J Mol Biol; 1974 Sep; 88(2):301-12. PubMed ID: 4616086
    [No Abstract]   [Full Text] [Related]  

  • 3. The -C-C-A end of tRNA and its role in protein biosynthesis.
    Sprinzl M; Cramer F
    Prog Nucleic Acid Res Mol Biol; 1979; 22():1-69. PubMed ID: 392600
    [No Abstract]   [Full Text] [Related]  

  • 4. Replacement of pseudouridine in transfer RNA by 5-fluorouridine does not affect the ability to stimulate the synthesis of guanosine 5'-triphosphate 3'-diphosphate.
    Chinali G; Horowitz J; Ofengand J
    Biochemistry; 1978 Jul; 17(14):2755-60. PubMed ID: 356873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein synthetic ability of Escherichia coli valine transfer RNA with pseudouridine, ribothymidine, and other uridine-derived residues replaced by 5-fluorouridine.
    Ofengand J; Bierbaum J
    J Mol Biol; 1974 Sep; 88(2):313-25. PubMed ID: 4616087
    [No Abstract]   [Full Text] [Related]  

  • 6. Transfer RNA selection at the ribosomal A and P sites.
    Peters M; Yarus M
    J Mol Biol; 1979 Nov; 134(3):471-91. PubMed ID: 395317
    [No Abstract]   [Full Text] [Related]  

  • 7. [Affinity modification of Escherichia coli ribosomes near the acceptor tRNA-binding site].
    Babkina GT; Karpova GG; Matasova NB
    Mol Biol (Mosk); 1984; 18(5):1287-96. PubMed ID: 6209548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stepwise tRNA recognition mechanism and its kinetic consequences.
    Knorre DG
    FEBS Lett; 1975 Oct; 58(1):50-2. PubMed ID: 1225603
    [No Abstract]   [Full Text] [Related]  

  • 9. Recognition by initiator transfer ribonucleic acid of a uridine 5' adjacent to the AUG codon: different conformational states of formylatable methionine-accepting transfer ribonucleic acid at the ribosomal peptidyl site.
    Eckhardt H; Lührmann R
    Biochemistry; 1981 Apr; 20(8):2075-80. PubMed ID: 7016171
    [No Abstract]   [Full Text] [Related]  

  • 10. Activation of preexisting messenger RNA in dry pea embryo axes.
    Jachymczyk WJ; Sieliwanowicz B; Chlebowicz E
    Acta Biochim Pol; 1974; 21(2):137-43. PubMed ID: 4850403
    [No Abstract]   [Full Text] [Related]  

  • 11. Cysteinyl-tRNA formation and prolyl-tRNA synthetase.
    Jacquin-Becker C; Ahel I; Ambrogelly A; Ruan B; Söll D; Stathopoulos C
    FEBS Lett; 2002 Mar; 514(1):34-6. PubMed ID: 11904177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Native and imported transfer RNA in mitochondria.
    Chiu N; Chiu A; Suyama Y
    J Mol Biol; 1975 Nov; 99(1):37-50. PubMed ID: 813002
    [No Abstract]   [Full Text] [Related]  

  • 13. Pseudouridylation of tRNAs and its role in regulation in Salmonella typhimurium.
    Turnbough CL; Neill RJ; Landsberg R; Ames BN
    J Biol Chem; 1979 Jun; 254(12):5111-9. PubMed ID: 376505
    [No Abstract]   [Full Text] [Related]  

  • 14. Selective charging of tRNA isoacceptors explains patterns of codon usage.
    Elf J; Nilsson D; Tenson T; Ehrenberg M
    Science; 2003 Jun; 300(5626):1718-22. PubMed ID: 12805541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of chemical modification of 3-(3-amino-3-carboxypropyl)uridine on tRNA function.
    Friedman S
    J Biol Chem; 1979 Aug; 254(15):7111-5. PubMed ID: 378998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary structure of E. coli alanine transfer RNA: relation to the yeast phenylalanyl tRNA synthetase recognition site.
    Williams RJ; Nagel W; Roe B; Dudock B
    Biochem Biophys Res Commun; 1974 Oct; 60(4):1215-21. PubMed ID: 4607604
    [No Abstract]   [Full Text] [Related]  

  • 17. [Interaction of tRNA with ribosomes].
    Kirillov SV; Semenkov IuP
    Mol Biol (Mosk); 1984; 18(5):1249-63. PubMed ID: 6390173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraction of aminoacyl-tRNA synthetases with ribosomes and ribosomal subunits.
    Graf H
    Biochim Biophys Acta; 1976 Mar; 425(2):175-84. PubMed ID: 1252498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro binding of phenylalanyl-tRNA to neonatal and adult mouse brain ribosomes.
    Chou L; Lerner MP; Johnson TC
    J Neurochem; 1971 Dec; 18(12):2535-44. PubMed ID: 5135909
    [No Abstract]   [Full Text] [Related]  

  • 20. Catalytic mechanism of phenylalanyl-tRNA synthetase of Escherichia coli K10. Different properties of native and photochemically cross-linked tRNAPhe can be explained in the light of tRNA conformer equilibria.
    Holler E; Baltzinger M; Favre A
    Biochemistry; 1981 Mar; 20(5):1139-47. PubMed ID: 7013785
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.