These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 36107961)
1. Diagnostic performance of deep learning-based automatic white matter hyperintensity segmentation for classification of the Fazekas scale and differentiation of subcortical vascular dementia. Joo L; Shim WH; Suh CH; Lim SJ; Heo H; Kim WS; Hong E; Lee D; Sung J; Lim JS; Lee JH; Kim SJ PLoS One; 2022; 17(9):e0274562. PubMed ID: 36107961 [TBL] [Abstract][Full Text] [Related]
2. Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both Multiple Sclerosis and elderly subjects. Tran P; Thoprakarn U; Gourieux E; Dos Santos CL; Cavedo E; Guizard N; Cotton F; Krolak-Salmon P; Delmaire C; Heidelberg D; Pyatigorskaya N; Ströer S; Dormont D; Martini JB; Chupin M; Neuroimage Clin; 2022; 33():102940. PubMed ID: 35051744 [TBL] [Abstract][Full Text] [Related]
4. Performance of three freely available methods for extracting white matter hyperintensities: FreeSurfer, UBO Detector, and BIANCA. Hotz I; Deschwanden PF; Liem F; Mérillat S; Malagurski B; Kollias S; Jäncke L Hum Brain Mapp; 2022 Apr; 43(5):1481-1500. PubMed ID: 34873789 [TBL] [Abstract][Full Text] [Related]
5. Automatic quantification of white matter hyperintensities on T2-weighted fluid attenuated inversion recovery magnetic resonance imaging. Igwe KC; Lao PJ; Vorburger RS; Banerjee A; Rivera A; Chesebro A; Laing K; Manly JJ; Brickman AM Magn Reson Imaging; 2022 Jan; 85():71-79. PubMed ID: 34662699 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI. Moeskops P; de Bresser J; Kuijf HJ; Mendrik AM; Biessels GJ; Pluim JPW; Išgum I Neuroimage Clin; 2018; 17():251-262. PubMed ID: 29159042 [TBL] [Abstract][Full Text] [Related]
7. A Fully Automated Visual Grading System for White Matter Hyperintensities of T2-Fluid Attenuated Inversion Recovery Magnetic Resonance Imaging. Rieu Z; Kim RE; Lee M; Kim HW; Kim D; Yong J; Kim J; Lee M; Lim H; Kim J J Integr Neurosci; 2023 May; 22(3):57. PubMed ID: 37258435 [TBL] [Abstract][Full Text] [Related]
8. Automatic segmentation and quantitative analysis of white matter hyperintensities on FLAIR images using trimmed-likelihood estimator. Wang R; Li C; Wang J; Wei X; Li Y; Hui C; Zhu Y; Zhang S Acad Radiol; 2014 Dec; 21(12):1512-23. PubMed ID: 25176451 [TBL] [Abstract][Full Text] [Related]
9. Segmentation of white matter hyperintensities on Oh KT; Kim D; Ye BS; Lee S; Yun M; Yoo SK Eur J Nucl Med Mol Imaging; 2021 Oct; 48(11):3422-3431. PubMed ID: 33693968 [TBL] [Abstract][Full Text] [Related]
10. Segmenting white matter hyperintensities on isotropic three-dimensional Fluid Attenuated Inversion Recovery magnetic resonance images: Assessing deep learning tools on a Norwegian imaging database. Røvang MS; Selnes P; MacIntosh BJ; Rasmus Groote I; Pålhaugen L; Sudre C; Fladby T; Bjørnerud A PLoS One; 2023; 18(8):e0285683. PubMed ID: 37616243 [TBL] [Abstract][Full Text] [Related]
11. Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology. Rachmadi MF; Valdés-Hernández MDC; Agan MLF; Di Perri C; Komura T; Comput Med Imaging Graph; 2018 Jun; 66():28-43. PubMed ID: 29523002 [TBL] [Abstract][Full Text] [Related]
12. Impact of white matter hyperintensity volumes estimated by automated methods using deep learning on stroke outcomes in small vessel occlusion stroke. Lee M; Suh CH; Sohn JH; Kim C; Han SW; Sung JH; Yu KH; Lim JS; Lee SH Front Aging Neurosci; 2024; 16():1399457. PubMed ID: 38974905 [TBL] [Abstract][Full Text] [Related]
13. Correlation between body composition and white matter hyperintensity in patients with acute ischemic stroke. Wu B; Huang D; Yi Z; Yu F; Liu L; Tang X; Jing K; Fan J; Pan C Medicine (Baltimore); 2023 Dec; 102(50):e36497. PubMed ID: 38115357 [TBL] [Abstract][Full Text] [Related]
14. White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks. Guerrero R; Qin C; Oktay O; Bowles C; Chen L; Joules R; Wolz R; Valdés-Hernández MC; Dickie DA; Wardlaw J; Rueckert D Neuroimage Clin; 2018; 17():918-934. PubMed ID: 29527496 [TBL] [Abstract][Full Text] [Related]
15. Limited One-time Sampling Irregularity Map (LOTS-IM) for Automatic Unsupervised Assessment of White Matter Hyperintensities and Multiple Sclerosis Lesions in Structural Brain Magnetic Resonance Images. Rachmadi MF; Valdés-Hernández MDC; Li H; Guerrero R; Meijboom R; Wiseman S; Waldman A; Zhang J; Rueckert D; Wardlaw J; Komura T Comput Med Imaging Graph; 2020 Jan; 79():101685. PubMed ID: 31846826 [TBL] [Abstract][Full Text] [Related]
16. Can white matter hyperintensities based Fazekas visual assessment scales inform about Alzheimer's disease pathology in the population? Pradeep A; Raghavan S; Przybelski SA; Preboske G; Schwarz CG; Lowe VJ; Knopman DS; Petersen RC; Jack CR; Graff-Radford J; Cogswell PM; Vemuri P Res Sq; 2024 Mar; ():. PubMed ID: 38558965 [TBL] [Abstract][Full Text] [Related]
17. An anatomical knowledge-based MRI deep learning pipeline for white matter hyperintensity quantification associated with cognitive impairment. Liang L; Zhou P; Lu W; Guo X; Ye C; Lv H; Wang T; Ma T Comput Med Imaging Graph; 2021 Apr; 89():101873. PubMed ID: 33610084 [TBL] [Abstract][Full Text] [Related]
18. Deep Bayesian networks for uncertainty estimation and adversarial resistance of white matter hyperintensity segmentation. Mojiri Forooshani P; Biparva M; Ntiri EE; Ramirez J; Boone L; Holmes MF; Adamo S; Gao F; Ozzoude M; Scott CJM; Dowlatshahi D; Lawrence-Dewar JM; Kwan D; Lang AE; Marcotte K; Leonard C; Rochon E; Heyn C; Bartha R; Strother S; Tardif JC; Symons S; Masellis M; Swartz RH; Moody A; Black SE; Goubran M Hum Brain Mapp; 2022 May; 43(7):2089-2108. PubMed ID: 35088930 [TBL] [Abstract][Full Text] [Related]
19. Computer-aided evaluation method of white matter hyperintensities related to subcortical vascular dementia based on magnetic resonance imaging. Kawata Y; Arimura H; Yamashita Y; Magome T; Ohki M; Toyofuku F; Higashida Y; Tsuchiya K Comput Med Imaging Graph; 2010 Jul; 34(5):370-6. PubMed ID: 20116974 [TBL] [Abstract][Full Text] [Related]
20. Radiomics from magnetic resonance imaging may be used to predict the progression of white matter hyperintensities and identify associated risk factors. Shu Z; Xu Y; Shao Y; Pang P; Gong X Eur Radiol; 2020 Jun; 30(6):3046-3058. PubMed ID: 32086580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]