BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 36107988)

  • 1. Skeletal muscle contraction kinetics and AMPK responses are modulated by the adenine nucleotide degrading enzyme AMPD1.
    Hafen PS; Law AS; Matias C; Miller SG; Brault JJ
    J Appl Physiol (1985); 2022 Nov; 133(5):1055-1066. PubMed ID: 36107988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of pharmacological AMP deaminase inhibition and Ampd1 deletion on nucleotide levels and AMPK activation in contracting skeletal muscle.
    Plaideau C; Lai YC; Kviklyte S; Zanou N; Löfgren L; Andersén H; Vertommen D; Gailly P; Hue L; Bohlooly-Y M; Hallén S; Rider MH
    Chem Biol; 2014 Nov; 21(11):1497-1510. PubMed ID: 25459662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AMPD1 regulates mTORC1-p70 S6 kinase axis in the control of insulin sensitivity in skeletal muscle.
    Tandelilin AA; Hirase T; Hudoyo AW; Cheng J; Toyama K; Morisaki H; Morisaki T
    BMC Endocr Disord; 2015 Mar; 15():11. PubMed ID: 25887856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of genetic deletion of soluble 5'-nucleotidases NT5C1A and NT5C2 on AMPK activation and nucleotide levels in contracting mouse skeletal muscles.
    Kviklyte S; Vertommen D; Yerna X; Andersén H; Xu X; Gailly P; Bohlooly-Y M; Oscarsson J; Rider MH
    Am J Physiol Endocrinol Metab; 2017 Jul; 313(1):E48-E62. PubMed ID: 28325731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protecting the cellular energy state during contractions: role of AMP deaminase.
    Hancock CR; Brault JJ; Terjung RL
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():17-29. PubMed ID: 17242488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AMP deamination is sufficient to replicate an atrophy-like metabolic phenotype in skeletal muscle.
    Miller SG; Hafen PS; Law AS; Springer CB; Logsdon DL; O'Connell TM; Witczak CA; Brault JJ
    Metabolism; 2021 Oct; 123():154864. PubMed ID: 34400216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AMPD1: a novel therapeutic target for reversing insulin resistance.
    Cheng J; Morisaki H; Toyama K; Sugimoto N; Shintani T; Tandelilin A; Hirase T; Holmes EW; Morisaki T
    BMC Endocr Disord; 2014 Dec; 14():96. PubMed ID: 25511531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenine nucleotide depletion in human muscle during exercise: causality and significance of AMP deamination.
    Sahlin K; Broberg S
    Int J Sports Med; 1990 May; 11 Suppl 2():S62-7. PubMed ID: 2361781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation of rat skeletal muscle to creatine depletion: AMP deaminase and AMP deamination.
    Ren JM; Holloszy JO
    J Appl Physiol (1985); 1992 Dec; 73(6):2713-6. PubMed ID: 1490990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of AMP-metabolizing enzymes controls adenine nucleotide levels and AMPK activation in HEK293T cells.
    Plaideau C; Liu J; Hartleib-Geschwindner J; Bastin-Coyette L; Bontemps F; Oscarsson J; Hue L; Rider MH
    FASEB J; 2012 Jun; 26(6):2685-94. PubMed ID: 22415305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [AMPD genes and urate metabolism].
    Morisaki H; Morisaki T
    Nihon Rinsho; 2008 Apr; 66(4):771-7. PubMed ID: 18409530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased AMP deaminase activity decreases ATP content and slows protein degradation in cultured skeletal muscle.
    Davis PR; Miller SG; Verhoeven NA; Morgan JS; Tulis DA; Witczak CA; Brault JJ
    Metabolism; 2020 Jul; 108():154257. PubMed ID: 32370945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of acidosis on AMP deaminase activity in contracting fast-twitch muscle.
    Dudley GA; Terjung RL
    Am J Physiol; 1985 Jan; 248(1 Pt 1):C43-50. PubMed ID: 3966542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in contraction-induced phosphorylation of AMP-activated protein kinase and mitogen-activated protein kinases in skeletal muscle after ovariectomy.
    Wohlers LM; Sweeney SM; Ward CW; Lovering RM; Spangenburg EE
    J Cell Biochem; 2009 May; 107(1):171-8. PubMed ID: 19259949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A short-term statin treatment changes the contractile properties of fast-twitch skeletal muscles.
    Piette AB; Dufresne SS; Frenette J
    BMC Musculoskelet Disord; 2016 Oct; 17(1):449. PubMed ID: 27793139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction.
    Jensen TE; Rose AJ; Jørgensen SB; Brandt N; Schjerling P; Wojtaszewski JF; Richter EA
    Am J Physiol Endocrinol Metab; 2007 May; 292(5):E1308-17. PubMed ID: 17213473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contraction-mediated phosphorylation of AMPK is lower in skeletal muscle of adenylate kinase-deficient mice.
    Hancock CR; Janssen E; Terjung RL
    J Appl Physiol (1985); 2006 Feb; 100(2):406-13. PubMed ID: 16195390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in AMP deaminase activity and kinetics in skeletal muscle of creatine kinase-deficient mice.
    Tullson PC; Rush JW; Wieringa B; Terjung RL
    Am J Physiol; 1998 May; 274(5):C1411-6. PubMed ID: 9612229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal muscle contractile performance and ADP accumulation in adenylate kinase-deficient mice.
    Hancock CR; Janssen E; Terjung RL
    Am J Physiol Cell Physiol; 2005 Jun; 288(6):C1287-97. PubMed ID: 15659712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-intensity contraction activates the alpha1-isoform of 5'-AMP-activated protein kinase in rat skeletal muscle.
    Toyoda T; Tanaka S; Ebihara K; Masuzaki H; Hosoda K; Sato K; Fushiki T; Nakao K; Hayashi T
    Am J Physiol Endocrinol Metab; 2006 Mar; 290(3):E583-90. PubMed ID: 16249251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.