These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36108040)

  • 1. Quadrupedal Walking with the Skin: The Ambulatory Flaps in "Walking" Cuttlefish (Paintpot Cuttlefish,
    Omura A; Takano H; Oka SI; Takei S
    Biol Bull; 2022 Aug; 243(1):44-49. PubMed ID: 36108040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative morphology of changeable skin papillae in octopus and cuttlefish.
    Allen JJ; Bell GR; Kuzirian AM; Velankar SS; Hanlon RT
    J Morphol; 2014 Apr; 275(4):371-90. PubMed ID: 24741712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordination between the fore- and hindlimbs is bidirectional, asymmetrically organized, and flexible during quadrupedal locomotion in the intact adult cat.
    Thibaudier Y; Hurteau MF; Telonio A; Frigon A
    Neuroscience; 2013 Jun; 240():13-26. PubMed ID: 23485807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cuttlefish skin papilla morphology suggests a muscular hydrostatic function for rapid changeability.
    Allen JJ; Bell GR; Kuzirian AM; Hanlon RT
    J Morphol; 2013 Jun; 274(6):645-56. PubMed ID: 23378271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quadrupedal locomotion in squirrel monkeys (Cebidae: Saimiri sciureus): a cineradiographic study of limb kinematics and related substrate reaction forces.
    Schmidt M
    Am J Phys Anthropol; 2005 Oct; 128(2):359-70. PubMed ID: 15838834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematic and EMG determinants in quadrupedal locomotion of a non-human primate (Rhesus).
    Courtine G; Roy RR; Hodgson J; McKay H; Raven J; Zhong H; Yang H; Tuszynski MH; Edgerton VR
    J Neurophysiol; 2005 Jun; 93(6):3127-45. PubMed ID: 15647397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological and kinematic specializations of walking frogs.
    Reynaga CM; Astley HC; Azizi E
    J Exp Zool A Ecol Integr Physiol; 2018 Feb; 329(2):87-98. PubMed ID: 29851278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interlimb Coordination during Tied-Belt and Transverse Split-Belt Locomotion before and after an Incomplete Spinal Cord Injury.
    Thibaudier Y; Hurteau MF; Dambreville C; Chraibi A; Goetz L; Frigon A
    J Neurotrauma; 2017 May; 34(9):1751-1765. PubMed ID: 27219842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of locomotion after ventral and ventrolateral spinal lesions in the cat. I. Deficits and adaptive mechanisms.
    Brustein E; Rossignol S
    J Neurophysiol; 1998 Sep; 80(3):1245-67. PubMed ID: 9744936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The neural control of interlimb coordination during mammalian locomotion.
    Frigon A
    J Neurophysiol; 2017 Jun; 117(6):2224-2241. PubMed ID: 28298308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterns of quadrupedal locomotion in a vertical clinging and leaping primate (Propithecus coquereli) with implications for understanding the functional demands of primate quadrupedal locomotion.
    Granatosky MC; Tripp CH; Fabre AC; Schmitt D
    Am J Phys Anthropol; 2016 Aug; 160(4):644-52. PubMed ID: 27062049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forelimb and hindlimb forces in walking and galloping primates.
    Hanna JB; Polk JD; Schmitt D
    Am J Phys Anthropol; 2006 Aug; 130(4):529-35. PubMed ID: 16425190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A kinematic and kinetic analysis of locomotion during voluntary gait modification in the cat.
    Lavoie S; McFadyen B; Drew T
    Exp Brain Res; 1995; 106(1):39-56. PubMed ID: 8542976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordination of movements of the kindlimbs and forelimbs in different forms of locomotion in normal and decerebrate cats.
    Miller S; Van Der Burg J; Van Der Meché F
    Brain Res; 1975 Jun; 91(2):217-37. PubMed ID: 1164672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Walking of cats on a grid: performance of locomotor task in spinal intact and hemisected cats.
    Kato M
    Neurosci Lett; 1992 Oct; 145(2):129-32. PubMed ID: 1465207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cuttlefish use visual cues to control three-dimensional skin papillae for camouflage.
    Allen JJ; Mäthger LM; Barbosa A; Hanlon RT
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Jun; 195(6):547-55. PubMed ID: 19294390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of different limb controllers to modulation of motor cortex neurons during locomotion.
    Zelenin PV; Deliagina TG; Orlovsky GN; Karayannidou A; Dasgupta NM; Sirota MG; Beloozerova IN
    J Neurosci; 2011 Mar; 31(12):4636-49. PubMed ID: 21430163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forelimb EMG-based trigger to control an electronic spinal bridge to enable hindlimb stepping after a complete spinal cord lesion in rats.
    Gad P; Woodbridge J; Lavrov I; Zhong H; Roy RR; Sarrafzadeh M; Edgerton VR
    J Neuroeng Rehabil; 2012 Jun; 9():38. PubMed ID: 22691460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional kinematic and kinetic analysis of quadrupedal walking in the common marmoset (Callithrix jacchus).
    Shimada H; Kanai R; Kondo T; Yoshino-Saito K; Uchida A; Nakamura M; Ushiba J; Okano H; Ogihara N
    Neurosci Res; 2017 Dec; 125():11-20. PubMed ID: 28711711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The locomotor kinematics of Asian and African elephants: changes with speed and size.
    Hutchinson JR; Schwerda D; Famini DJ; Dale RH; Fischer MS; Kram R
    J Exp Biol; 2006 Oct; 209(Pt 19):3812-27. PubMed ID: 16985198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.