These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 36108141)

  • 21. Self-Encapsulation of High-Entropy Alloy Nanoparticles inside Carbonized Wood for Highly Durable Electrocatalysis.
    Wang Y; Zhang Y; Xing P; Li X; Du Q; Fan X; Cai Z; Yin R; Yao Y; Gan W
    Adv Mater; 2024 Jul; 36(28):e2402391. PubMed ID: 38669588
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electron-level insight into efficient synergistic oxygen evolution catalysis at multimetallic sites in PtNiFeCoCu high-entropy alloys.
    Ming S; Meng K; Hou C; Qin L; Wang S; Rong J; Yu X; Hou H
    Phys Chem Chem Phys; 2023 Dec; 25(48):32979-32988. PubMed ID: 38031515
    [TBL] [Abstract][Full Text] [Related]  

  • 23. N-Doping Effects On Electrocatalytic Water Splitting of Non-Noble High-Entropy Alloy Nanoparticles Prepared by Inert Gas Condensation.
    Zhou X; Zou L; Zhu H; Yan M; Wang J; Lan S; Chen S; Hahn H; Feng T
    Small; 2024 May; 20(21):e2310327. PubMed ID: 38098433
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acidic Oxygen Evolution Reaction: Fundamental Understanding and Electrocatalysts Design.
    Li J; Tian W; Li Q; Zhao S
    ChemSusChem; 2024 Mar; ():e202400239. PubMed ID: 38481084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent progress in pristine MOF-based catalysts for electrochemical hydrogen evolution, oxygen evolution and oxygen reduction.
    Fan L; Kang Z; Li M; Sun D
    Dalton Trans; 2021 May; 50(17):5732-5753. PubMed ID: 33949512
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advanced Oxygen Electrocatalyst for Air-Breathing Electrode in Zn-Air Batteries.
    Kundu A; Mallick S; Ghora S; Raj CR
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40172-40199. PubMed ID: 34424683
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrocatalysts Based on Transition Metal Borides and Borates for the Oxygen Evolution Reaction.
    Cui L; Zhang W; Zheng R; Liu J
    Chemistry; 2020 Sep; 26(51):11661-11672. PubMed ID: 32320104
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design Engineering, Synthesis Protocols, and Energy Applications of MOF-Derived Electrocatalysts.
    Radwan A; Jin H; He D; Mu S
    Nanomicro Lett; 2021 Jun; 13(1):132. PubMed ID: 34138365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bio-high entropy alloys: Progress, challenges, and opportunities.
    Feng J; Tang Y; Liu J; Zhang P; Liu C; Wang L
    Front Bioeng Biotechnol; 2022; 10():977282. PubMed ID: 36159673
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New Conceptual Catalyst on Spatial High-Entropy Alloy Heterostructures for High-Performance Li-O
    Zhang P; Hui X; Nie Y; Wang R; Wang C; Zhang Z; Yin L
    Small; 2023 Apr; 19(15):e2206742. PubMed ID: 36617521
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-entropy alloy electrocatalysts go to (sub-)nanoscale.
    Li M; Lin F; Zhang S; Zhao R; Tao L; Li L; Li J; Zeng L; Luo M; Guo S
    Sci Adv; 2024 Jun; 10(23):eadn2877. PubMed ID: 38838156
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ordering-Dependent Hydrogen Evolution and Oxygen Reduction Electrocatalysis of High-Entropy Intermetallic Pt
    Wang Y; Gong N; Liu H; Ma W; Hippalgaonkar K; Liu Z; Huang Y
    Adv Mater; 2023 Jul; 35(28):e2302067. PubMed ID: 37165532
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Silica-Derived Nanostructured Electrode Materials for ORR, OER, HER, CO
    Onajah S; Sarkar R; Islam MS; Lalley M; Khan K; Demir M; Abdelhamid HN; Farghaly AA
    Chem Rec; 2024 Apr; 24(4):e202300234. PubMed ID: 38530060
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent development of two-dimensional metal-organic framework derived electrocatalysts for hydrogen and oxygen electrocatalysis.
    Wu H; Wang J; Jin W; Wu Z
    Nanoscale; 2020 Sep; 12(36):18497-18522. PubMed ID: 32839807
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent Advances in Porphyrin-Based Systems for Electrochemical Oxygen Evolution Reaction.
    Yao B; He Y; Wang S; Sun H; Liu X
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoscale Design for High Entropy Alloy Electrocatalysts.
    Li Y; Yao Z; Gao W; Shang W; Deng T; Wu J
    Small; 2024 May; 20(21):e2310006. PubMed ID: 38088529
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bayesian Optimization of High-Entropy Alloy Compositions for Electrocatalytic Oxygen Reduction*.
    Pedersen JK; Clausen CM; Krysiak OA; Xiao B; Batchelor TAA; Löffler T; Mints VA; Banko L; Arenz M; Savan A; Schuhmann W; Ludwig A; Rossmeisl J
    Angew Chem Int Ed Engl; 2021 Nov; 60(45):24144-24152. PubMed ID: 34506069
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Research on engineered electrocatalysts for efficient water splitting: a comprehensive review.
    Jayabharathi J; Karthikeyan B; Vishnu B; Sriram S
    Phys Chem Chem Phys; 2023 Mar; 25(13):8992-9019. PubMed ID: 36928479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives.
    Ghosh S; Basu RN
    Nanoscale; 2018 Jun; 10(24):11241-11280. PubMed ID: 29897365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amorphous Catalysts and Electrochemical Water Splitting: An Untold Story of Harmony.
    Anantharaj S; Noda S
    Small; 2020 Jan; 16(2):e1905779. PubMed ID: 31823508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.