These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36108270)

  • 41. Machine Learning to Predict Binding Affinity.
    Bitencourt-Ferreira G; de Azevedo WF
    Methods Mol Biol; 2019; 2053():251-273. PubMed ID: 31452110
    [TBL] [Abstract][Full Text] [Related]  

  • 42. SMPLIP-Score: predicting ligand binding affinity from simple and interpretable on-the-fly interaction fingerprint pattern descriptors.
    Kumar S; Kim MH
    J Cheminform; 2021 Mar; 13(1):28. PubMed ID: 33766140
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Predicting the impacts of mutations on protein-ligand binding affinity based on molecular dynamics simulations and machine learning methods.
    Wang DD; Ou-Yang L; Xie H; Zhu M; Yan H
    Comput Struct Biotechnol J; 2020; 18():439-454. PubMed ID: 32153730
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Binding affinity prediction for protein-ligand complexes based on β contacts and B factor.
    Liu Q; Kwoh CK; Li J
    J Chem Inf Model; 2013 Nov; 53(11):3076-85. PubMed ID: 24191692
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Extended connectivity interaction features: improving binding affinity prediction through chemical description.
    Sánchez-Cruz N; Medina-Franco JL; Mestres J; Barril X
    Bioinformatics; 2021 Jun; 37(10):1376-1382. PubMed ID: 33226061
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Impact of Crystallographic Data for the Development of Machine Learning Models to Predict Protein-Ligand Binding Affinity.
    Veit-Acosta M; de Azevedo Junior WF
    Curr Med Chem; 2021 Oct; 28(34):7006-7022. PubMed ID: 33568025
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Empirical Scoring Functions for Affinity Prediction of Protein-ligand Complexes.
    Pason LP; Sotriffer CA
    Mol Inform; 2016 Dec; 35(11-12):541-548. PubMed ID: 27870243
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Building Machine-Learning Scoring Functions for Structure-Based Prediction of Intermolecular Binding Affinity.
    Wójcikowski M; Siedlecki P; Ballester PJ
    Methods Mol Biol; 2019; 2053():1-12. PubMed ID: 31452095
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Forging the Basis for Developing Protein-Ligand Interaction Scoring Functions.
    Liu Z; Su M; Han L; Liu J; Yang Q; Li Y; Wang R
    Acc Chem Res; 2017 Feb; 50(2):302-309. PubMed ID: 28182403
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Machine Learning-Based Scoring Functions, Development and Applications with SAnDReS.
    Bitencourt-Ferreira G; Rizzotto C; de Azevedo Junior WF
    Curr Med Chem; 2021; 28(9):1746-1756. PubMed ID: 32410551
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Machine learning on ligand-residue interaction profiles to significantly improve binding affinity prediction.
    Ji B; He X; Zhai J; Zhang Y; Man VH; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33758923
    [TBL] [Abstract][Full Text] [Related]  

  • 52. K
    Jiménez J; Škalič M; Martínez-Rosell G; De Fabritiis G
    J Chem Inf Model; 2018 Feb; 58(2):287-296. PubMed ID: 29309725
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A point cloud-based deep learning strategy for protein-ligand binding affinity prediction.
    Wang Y; Wu S; Duan Y; Huang Y
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34849569
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Predicting protein-ligand binding affinities using novel geometrical descriptors and machine-learning methods.
    Deng W; Breneman C; Embrechts MJ
    J Chem Inf Comput Sci; 2004; 44(2):699-703. PubMed ID: 15032552
    [TBL] [Abstract][Full Text] [Related]  

  • 55.
    Yang YX; Huang JY; Wang P; Zhu BT
    J Chem Inf Model; 2023 Jun; 63(11):3230-3237. PubMed ID: 37235532
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Iterative Knowledge-Based Scoring Functions Derived from Rigid and Flexible Decoy Structures: Evaluation with the 2013 and 2014 CSAR Benchmarks.
    Yan C; Grinter SZ; Merideth BR; Ma Z; Zou X
    J Chem Inf Model; 2016 Jun; 56(6):1013-21. PubMed ID: 26389744
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Machine-Learning- and Knowledge-Based Scoring Functions Incorporating Ligand and Protein Fingerprints.
    Fujimoto KJ; Minami S; Yanai T
    ACS Omega; 2022 Jun; 7(22):19030-19039. PubMed ID: 35694525
    [TBL] [Abstract][Full Text] [Related]  

  • 58. FFENCODER-PL: Pair Wise Energy Descriptors for Protein-Ligand Pose Selection.
    Pei J; Song LF; Merz KM
    J Chem Theory Comput; 2021 Oct; 17(10):6647-6657. PubMed ID: 34553938
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Persistent spectral-based machine learning (PerSpect ML) for protein-ligand binding affinity prediction.
    Meng Z; Xia K
    Sci Adv; 2021 May; 7(19):. PubMed ID: 33962954
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hypergraph-based persistent cohomology (HPC) for molecular representations in drug design.
    Liu X; Wang X; Wu J; Xia K
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33480394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.