BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36108856)

  • 1. Ionic specificity mediates the transport and retention of graphene-based nanomaterials in saturated porous media.
    Xia T; Xie Y; Bai S; Guo X; Zhu L; Zhang C
    Sci Total Environ; 2023 Jan; 854():158724. PubMed ID: 36108856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cation-Inhibited Transport of Graphene Oxide Nanomaterials in Saturated Porous Media: The Hofmeister Effects.
    Xia T; Qi Y; Liu J; Qi Z; Chen W; Wiesner MR
    Environ Sci Technol; 2017 Jan; 51(2):828-837. PubMed ID: 27996240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport and retention of reduced graphene oxide materials in saturated porous media: Synergistic effects of enhanced attachment and particle aggregation.
    Xia T; Ma P; Qi Y; Zhu L; Qi Z; Chen W
    Environ Pollut; 2019 Apr; 247():383-391. PubMed ID: 30690234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of Sulfide-Reduced Graphene Oxide in Saturated Quartz Sand: Cation-Dependent Retention Mechanisms.
    Xia T; Fortner JD; Zhu D; Qi Z; Chen W
    Environ Sci Technol; 2015 Oct; 49(19):11468-75. PubMed ID: 26348539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene oxide-facilitated transport of Pb
    Jiang Y; Zhang X; Yin X; Sun H; Wang N
    Sci Total Environ; 2018 Aug; 631-632():369-376. PubMed ID: 29525715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of graphene oxide in saturated porous media: effect of cation composition in mixed Na-Ca electrolyte systems.
    Fan W; Jiang XH; Yang W; Geng Z; Huo MX; Liu ZM; Zhou H
    Sci Total Environ; 2015 Apr; 511():509-15. PubMed ID: 25577737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosurfactant-mediated mobility of graphene oxide nanoparticles in saturated porous media.
    Chen J; Zhang Q; Zhu Y; Li Y; Chen W; Lu T; Qi Z
    Environ Sci Process Impacts; 2022 Oct; 24(10):1883-1894. PubMed ID: 36148869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the transport of pristine and photoaged graphene oxide-hematite nanohybrids in saturated porous media: Impacts of XDLVO interactions and surface roughness.
    Xia T; Li S; Wang H; Guo C; Liu C; Liu A; Guo X; Zhu L
    J Hazard Mater; 2021 Oct; 419():126488. PubMed ID: 34214851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of graphene oxide in saturated quartz sand containing iron oxides.
    Qi Z; Du T; Ma P; Liu F; Chen W
    Sci Total Environ; 2019 Mar; 657():1450-1459. PubMed ID: 30677911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concurrent aggregation and transport of graphene oxide in saturated porous media: Roles of temperature, cation type, and electrolyte concentration.
    Wang M; Gao B; Tang D; Yu C
    Environ Pollut; 2018 Apr; 235():350-357. PubMed ID: 29304468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of polyamide microplastic on the transport of graphene oxide in porous media.
    Wu M; Chen Y; Cheng Z; Hao Y; Hu BX; Mo C; Li Q; Zhao H; Xiang L; Wu J; Wu J; Lu G
    Sci Total Environ; 2022 Oct; 843():157042. PubMed ID: 35777558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-transport of graphene oxide and titanium dioxide nanoparticles in saturated quartz sand: Influences of solution pH and metal ions.
    Xia T; Lin Y; Guo X; Li S; Cui J; Ping H; Zhang J; Zhong R; Du L; Han C; Zhu L
    Environ Pollut; 2019 Aug; 251():723-730. PubMed ID: 31112926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-transport of negatively charged nanoparticles in saturated porous media: Impacts of hydrophobicity and surface O-functional groups.
    Xia T; Lin Y; Li S; Yan N; Xie Y; He M; Guo X; Zhu L
    J Hazard Mater; 2021 May; 409():124477. PubMed ID: 33172676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-transport of graphene oxide and heavy metal ions in surface-modified porous media.
    Yin X; Jiang Y; Tan Y; Meng X; Sun H; Wang N
    Chemosphere; 2019 Mar; 218():1-13. PubMed ID: 30458243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deposition and remobilization of graphene oxide within saturated sand packs.
    Feriancikova L; Xu S
    J Hazard Mater; 2012 Oct; 235-236():194-200. PubMed ID: 22884729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influences of input concentration, media particle size, metal cation valence, and ionic concentration on the transport, long-term release, and particle breakage of polyvinyl chloride nanoplastics in saturated porous media.
    Zhang M; Hou J; Xia J; Zeng Y; Miao L
    Chemosphere; 2023 May; 322():138130. PubMed ID: 36780995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfide reduction can significantly enhance transport of biochar fine particles in saturated porous medium.
    Ma P; Chen W
    Environ Pollut; 2020 Aug; 263(Pt B):114445. PubMed ID: 32251981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport and retention of ciprofloxacin with presence of multi-walled carbon nanotubes in the saturated porous media: impacts of ionic strength and cation types.
    Xiao R; Huang D; Du L; Yin L; Gao L; Chen H; Tang Z
    Environ Geochem Health; 2024 Apr; 46(5):153. PubMed ID: 38587707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retention of graphene oxide and reduced graphene oxide in porous media: Diffusion-attachment, interception-attachment and straining.
    Song J; Zeng Y; Liu Y; Jiang W
    J Hazard Mater; 2022 Jun; 431():128635. PubMed ID: 35278966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of temperature on graphene oxide deposition and transport in saturated porous media.
    Wang M; Gao B; Tang D; Sun H; Yin X; Yu C
    J Hazard Mater; 2017 Jun; 331():28-35. PubMed ID: 28242526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.