BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 36109167)

  • 1. Pharmacological Manipulations of Physiological Arousal and Sleep-Like Slow Waves Modulate Sustained Attention.
    Pinggal E; Dockree PM; O'Connell RG; Bellgrove MA; Andrillon T
    J Neurosci; 2022 Oct; 42(43):8113-8124. PubMed ID: 36109167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow-wave activity surrounding stage N2 K-complexes and daytime function measured by psychomotor vigilance test in obstructive sleep apnea.
    Parekh A; Mullins AE; Kam K; Varga AW; Rapoport DM; Ayappa I
    Sleep; 2019 Mar; 42(3):. PubMed ID: 30561750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting lapses of attention with sleep-like slow waves.
    Andrillon T; Burns A; Mackay T; Windt J; Tsuchiya N
    Nat Commun; 2021 Jun; 12(1):3657. PubMed ID: 34188023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local experience-dependent changes in the wake EEG after prolonged wakefulness.
    Hung CS; Sarasso S; Ferrarelli F; Riedner B; Ghilardi MF; Cirelli C; Tononi G
    Sleep; 2013 Jan; 36(1):59-72. PubMed ID: 23288972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dextroamphetamine (but Not Atomoxetine) Induces Reanimation from General Anesthesia: Implications for the Roles of Dopamine and Norepinephrine in Active Emergence.
    Kenny JD; Taylor NE; Brown EN; Solt K
    PLoS One; 2015; 10(7):e0131914. PubMed ID: 26148114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methylphenidate and atomoxetine normalise fronto-parietal underactivation during sustained attention in ADHD adolescents.
    Kowalczyk OS; Cubillo AI; Smith A; Barrett N; Giampietro V; Brammer M; Simmons A; Rubia K
    Eur Neuropsychopharmacol; 2019 Oct; 29(10):1102-1116. PubMed ID: 31358436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep.
    Rodriguez AV; Funk CM; Vyazovskiy VV; Nir Y; Tononi G; Cirelli C
    J Neurosci; 2016 Dec; 36(49):12436-12447. PubMed ID: 27927960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monoaminergic modulation of behavioural and electrophysiological indices of error processing.
    Barnes JJ; O'Connell RG; Nandam LS; Dean AJ; Bellgrove MA
    Psychopharmacology (Berl); 2014 Jan; 231(2):379-92. PubMed ID: 23995299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two distinct synchronization processes in the transition to sleep: a high-density electroencephalographic study.
    Siclari F; Bernardi G; Riedner BA; LaRocque JJ; Benca RM; Tononi G
    Sleep; 2014 Oct; 37(10):1621-37. PubMed ID: 25197810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory of visual attention (TVA) applied to rats performing the 5-choice serial reaction time task: differential effects of dopaminergic and noradrenergic manipulations.
    Hervig ME; Toschi C; Petersen A; Vangkilde S; Gether U; Robbins TW
    Psychopharmacology (Berl); 2023 Jan; 240(1):41-58. PubMed ID: 36434307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Variations of hypothalamic and cortical prostaglandins and monoamines reveal transitions in arousal states: microdialysis study in the rat].
    Nicolaidis S; Gerozissis K; Orosco M
    Rev Neurol (Paris); 2001 Nov; 157(11 Pt 2):S26-33. PubMed ID: 11924034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].
    Šaponjić J
    Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of Wakefulness and Brain Arousal Regulation in Psychiatric Research.
    Sander C; Hensch T; Wittekind DA; Böttger D; Hegerl U
    Neuropsychobiology; 2015; 72(3-4):195-205. PubMed ID: 26901462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An electrophysiological marker of arousal level in humans.
    Lendner JD; Helfrich RF; Mander BA; Romundstad L; Lin JJ; Walker MP; Larsson PG; Knight RT
    Elife; 2020 Jul; 9():. PubMed ID: 32720644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential modulation of high-frequency gamma-electroencephalogram activity and sleep-wake state by noradrenaline and serotonin microinjections into the region of cholinergic basalis neurons.
    Cape EG; Jones BE
    J Neurosci; 1998 Apr; 18(7):2653-66. PubMed ID: 9502823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vigilance, alertness, or sustained attention: physiological basis and measurement.
    Oken BS; Salinsky MC; Elsas SM
    Clin Neurophysiol; 2006 Sep; 117(9):1885-901. PubMed ID: 16581292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catecholamines and the sleep-wake cycle. I. EEG and behavioral arousal.
    Monti JM
    Life Sci; 1982 Apr; 30(14):1145-57. PubMed ID: 7045557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves.
    Esser SK; Hill SL; Tononi G
    Sleep; 2007 Dec; 30(12):1617-30. PubMed ID: 18246972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective neuronal lapses precede human cognitive lapses following sleep deprivation.
    Nir Y; Andrillon T; Marmelshtein A; Suthana N; Cirelli C; Tononi G; Fried I
    Nat Med; 2017 Dec; 23(12):1474-1480. PubMed ID: 29106402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacologically induced changes in arousal: effects on behavioral and electrophysiologic measures of alertness and attention.
    Oken BS; Kishiyama SS; Salinsky MC
    Electroencephalogr Clin Neurophysiol; 1995 Nov; 95(5):359-71. PubMed ID: 7489665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.