These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36109215)

  • 1. Trapped-particle microrheology of active suspensions.
    Peng Z; Brady JF
    J Chem Phys; 2022 Sep; 157(10):104119. PubMed ID: 36109215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microrheology of colloidal systems.
    Puertas AM; Voigtmann T
    J Phys Condens Matter; 2014 Jun; 26(24):243101. PubMed ID: 24848328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microrheology of colloidal suspensions via dynamic Monte Carlo simulations.
    García Daza FA; Puertas AM; Cuetos A; Patti A
    J Colloid Interface Sci; 2022 Jan; 605():182-192. PubMed ID: 34325340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear microrheology of active Brownian suspensions.
    Burkholder EW; Brady JF
    Soft Matter; 2020 Jan; 16(4):1034-1046. PubMed ID: 31854425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sticky, active microrheology: Part 1. Linear-response.
    Huang DE; Zia RN
    J Colloid Interface Sci; 2019 Oct; 554():580-591. PubMed ID: 31326790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active and nonlinear microrheology in dense colloidal suspensions.
    Gazuz I; Puertas AM; Voigtmann T; Fuchs M
    Phys Rev Lett; 2009 Jun; 102(24):248302. PubMed ID: 19659052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sticky-probe active microrheology: Part 2. The influence of attractions on non-Newtonian flow.
    Huang DE; Zia RN
    J Colloid Interface Sci; 2020 Mar; 562():293-306. PubMed ID: 31841889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward a nonequilibrium Stokes-Einstein relation via active microrheology of hydrodynamically interacting colloidal dispersions.
    Chu HCW; Zia RN
    J Colloid Interface Sci; 2019 Mar; 539():388-399. PubMed ID: 30597285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active microrheology of colloidal suspensions of hard cuboids.
    Rafael EM; Tonti L; Daza FAG; Patti A
    Phys Rev E; 2022 Sep; 106(3-1):034612. PubMed ID: 36266794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear microrheology: bulk stresses versus direct interactions.
    Squires TM
    Langmuir; 2008 Feb; 24(4):1147-59. PubMed ID: 18154310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Microrheology in Food Science.
    Yang N; Lv R; Jia J; Nishinari K; Fang Y
    Annu Rev Food Sci Technol; 2017 Feb; 8():493-521. PubMed ID: 28125345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluctuation-dissipation in active matter.
    Burkholder EW; Brady JF
    J Chem Phys; 2019 May; 150(18):184901. PubMed ID: 31091919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of probe size on measurements of diffusion in active microrheology.
    Hoh NJ; Zia RN
    Lab Chip; 2016 Aug; 16(16):3114-29. PubMed ID: 27442485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oscillatory active microrheology of active suspensions.
    Knežević M; Avilés Podgurski LE; Stark H
    Sci Rep; 2021 Nov; 11(1):22706. PubMed ID: 34811417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlating microscopic viscoelasticity and structure of an aging colloidal gel using active microrheology and cryogenic scanning electron microscopy.
    Biswas R; Parmar VRS; Thambi AG; Bandyopadhyay R
    Soft Matter; 2023 Mar; 19(13):2407-2416. PubMed ID: 36928531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive and active microrheology of hard-sphere colloids.
    Wilson LG; Harrison AW; Schofield AB; Arlt J; Poon WC
    J Phys Chem B; 2009 Mar; 113(12):3806-12. PubMed ID: 19673070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of non-Gaussian Brownian motion on direct force optical tweezers measurements of the electrostatic forces between pairs of colloidal particles.
    Raudsepp A; A K Williams M; B Hall S
    Eur Phys J E Soft Matter; 2016 Jul; 39(7):70. PubMed ID: 27439853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stationary and transient work-fluctuation theorems for a dragged Brownian particle.
    van Zon R; Cohen EG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046102. PubMed ID: 12786431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mean-field microrheology of a very soft colloidal suspension: Inertia induces shear thickening.
    Démery V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062301. PubMed ID: 26172713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of slip between a probe particle and a gel in microrheology.
    Fu HC; Shenoy VB; Powers TR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061503. PubMed ID: 19256842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.