BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36109219)

  • 1. Molecular dipole moment learning via rotationally equivariant derivative kernels in molecular-orbital-based machine learning.
    Sun J; Cheng L; Miller TF
    J Chem Phys; 2022 Sep; 157(10):104109. PubMed ID: 36109219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate Molecular-Orbital-Based Machine Learning Energies via Unsupervised Clustering of Chemical Space.
    Cheng L; Sun J; Miller TF
    J Chem Theory Comput; 2022 Aug; 18(8):4826-4835. PubMed ID: 35858242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regression Clustering for Improved Accuracy and Training Costs with Molecular-Orbital-Based Machine Learning.
    Cheng L; Kovachki NB; Welborn M; Miller TF
    J Chem Theory Comput; 2019 Dec; 15(12):6668-6677. PubMed ID: 31638804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular-orbital-based machine learning for open-shell and multi-reference systems with kernel addition Gaussian process regression.
    Cheng L; Sun J; Deustua JE; Bhethanabotla VC; Miller TF
    J Chem Phys; 2022 Oct; 157(15):154105. PubMed ID: 36272799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zn Coordination Chemistry:  Development of Benchmark Suites for Geometries, Dipole Moments, and Bond Dissociation Energies and Their Use To Test and Validate Density Functionals and Molecular Orbital Theory.
    Amin EA; Truhlar DG
    J Chem Theory Comput; 2008 Jan; 4(1):75-85. PubMed ID: 26619981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved accuracy and transferability of molecular-orbital-based machine learning: Organics, transition-metal complexes, non-covalent interactions, and transition states.
    Husch T; Sun J; Cheng L; Lee SJR; Miller TF
    J Chem Phys; 2021 Feb; 154(6):064108. PubMed ID: 33588560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A universal density matrix functional from molecular orbital-based machine learning: Transferability across organic molecules.
    Cheng L; Welborn M; Christensen AS; Miller TF
    J Chem Phys; 2019 Apr; 150(13):131103. PubMed ID: 30954042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast Near
    Lu F; Cheng L; DiRisio RJ; Finney JM; Boyer MA; Moonkaen P; Sun J; Lee SJR; Deustua JE; Miller TF; McCoy AB
    J Phys Chem A; 2022 Jun; 126(25):4013-4024. PubMed ID: 35715227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical gradients for molecular-orbital-based machine learning.
    Lee SJR; Husch T; Ding F; Miller TF
    J Chem Phys; 2021 Mar; 154(12):124120. PubMed ID: 33810669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kernel based quantum machine learning at record rate: Many-body distribution functionals as compact representations.
    Khan D; Heinen S; von Lilienfeld OA
    J Chem Phys; 2023 Jul; 159(3):. PubMed ID: 37462285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A data-driven approach to determine dipole moments of diatomic molecules.
    Liu X; Meijer G; Pérez-Ríos J
    Phys Chem Chem Phys; 2020 Nov; 22(42):24191-24200. PubMed ID: 33147314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Valence topological charge-transfer indices for dipole moments.
    Torrens F
    Mol Divers; 2004; 8(4):365-70. PubMed ID: 15612640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transferability in Machine Learning for Electronic Structure via the Molecular Orbital Basis.
    Welborn M; Cheng L; Miller TF
    J Chem Theory Comput; 2018 Sep; 14(9):4772-4779. PubMed ID: 30040892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transferable Multilevel Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multitask Learning.
    Liu Z; Lin L; Jia Q; Cheng Z; Jiang Y; Guo Y; Ma J
    J Chem Inf Model; 2021 Mar; 61(3):1066-1082. PubMed ID: 33629839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward Reliable Dipole Moments without Single Excitations: The Role of Orbital Rotations and Dynamical Correlation.
    Chakraborty R; de Moraes MMF; Boguslawski K; Nowak A; Świerczyński J; Tecmer P
    J Chem Theory Comput; 2024 Jun; 20(11):4689-4702. PubMed ID: 38809012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen bonding and induced dipole moments in water: predictions from the Gaussian charge polarizable model and Car-Parrinello molecular dynamics.
    Dyer PJ; Cummings PT
    J Chem Phys; 2006 Oct; 125(14):144519. PubMed ID: 17042621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach.
    Ramakrishnan R; Dral PO; Rupp M; von Lilienfeld OA
    J Chem Theory Comput; 2015 May; 11(5):2087-96. PubMed ID: 26574412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error.
    Faber FA; Hutchison L; Huang B; Gilmer J; Schoenholz SS; Dahl GE; Vinyals O; Kearnes S; Riley PF; von Lilienfeld OA
    J Chem Theory Comput; 2017 Nov; 13(11):5255-5264. PubMed ID: 28926232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic dipole moments calculated using analytical molecular second-moment gradients.
    Solheim H; Ruud K; Astrand PO
    J Chem Phys; 2004 Jun; 120(22):10368-78. PubMed ID: 15268064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dipole Moment Calculations Using Multiconfiguration Pair-Density Functional Theory and Hybrid Multiconfiguration Pair-Density Functional Theory.
    Lykhin AO; Truhlar DG; Gagliardi L
    J Chem Theory Comput; 2021 Dec; 17(12):7586-7601. PubMed ID: 34793166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.