These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36109522)

  • 1. Unveiling Weyl-related optical responses in semiconducting tellurium by mid-infrared circular photogalvanic effect.
    Ma J; Cheng B; Li L; Fan Z; Mu H; Lai J; Song X; Yang D; Cheng J; Wang Z; Zeng C; Sun D
    Nat Commun; 2022 Sep; 13(1):5425. PubMed ID: 36109522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi.
    Rees D; Manna K; Lu B; Morimoto T; Borrmann H; Felser C; Moore JE; Torchinsky DH; Orenstein J
    Sci Adv; 2020 Jul; 6(29):eaba0509. PubMed ID: 32832618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chiral terahertz wave emission from the Weyl semimetal TaAs.
    Gao Y; Kaushik S; Philip EJ; Li Z; Qin Y; Liu YP; Zhang WL; Su YL; Chen X; Weng H; Kharzeev DE; Liu MK; Qi J
    Nat Commun; 2020 Feb; 11(1):720. PubMed ID: 32024831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetotransport signatures of Weyl physics and discrete scale invariance in the elemental semiconductor tellurium.
    Zhang N; Zhao G; Li L; Wang P; Xie L; Cheng B; Li H; Lin Z; Xi C; Ke J; Yang M; He J; Sun Z; Wang Z; Zhang Z; Zeng C
    Proc Natl Acad Sci U S A; 2020 May; 117(21):11337-11343. PubMed ID: 32398373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two Linear Regimes in Optical Conductivity of a Type-I Weyl Semimetal: The Case of Elemental Tellurium.
    Rodriguez D; Tsirlin AA; Biesner T; Ueno T; Takahashi T; Kobayashi K; Dressel M; Uykur E
    Phys Rev Lett; 2020 Apr; 124(13):136402. PubMed ID: 32302162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Wide-Range Photosensitive Weyl Semimetal Single Crystal-TaAs.
    Chi S; Li Z; Xie Y; Zhao Y; Wang Z; Li L; Yu H; Wang G; Weng H; Zhang H; Wang J
    Adv Mater; 2018 Oct; 30(43):e1801372. PubMed ID: 30260577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatially dispersive circular photogalvanic effect in a Weyl semimetal.
    Ji Z; Liu G; Addison Z; Liu W; Yu P; Gao H; Liu Z; Rappe AM; Kane CL; Mele EJ; Agarwal R
    Nat Mater; 2019 Sep; 18(9):955-962. PubMed ID: 31308515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Circular Photogalvanic and Photovoltaic Effect in 2D Tellurium with Different Chirality.
    Niu C; Huang S; Ghosh N; Tan P; Wang M; Wu W; Xu X; Ye PD
    Nano Lett; 2023 Apr; 23(8):3599-3606. PubMed ID: 37057864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantized circular photogalvanic effect in Weyl semimetals.
    de Juan F; Grushin AG; Morimoto T; Moore JE
    Nat Commun; 2017 Jul; 8():15995. PubMed ID: 28681840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic Picosecond Spin-Photocurrent from Weyl Semimetal WTe
    Chen M; Lee K; Li J; Cheng L; Wang Q; Cai K; Chia EEM; Chang H; Yang H
    ACS Nano; 2020 Mar; 14(3):3539-3545. PubMed ID: 32160456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions Remove the Quantization of the Chiral Photocurrent at Weyl Points.
    Avdoshkin A; Kozii V; Moore JE
    Phys Rev Lett; 2020 May; 124(19):196603. PubMed ID: 32469533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin-Dependent Photovoltaic and Photogalvanic Responses of Optoelectronic Devices Based on Chiral Two-Dimensional Hybrid Organic-Inorganic Perovskites.
    Wang J; Lu H; Pan X; Xu J; Liu H; Liu X; Khanal DR; Toney MF; Beard MC; Vardeny ZV
    ACS Nano; 2021 Jan; 15(1):588-595. PubMed ID: 33241679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Light Orbital Angular Momentum Detection in Mid-Infrared Based on the Type-II Weyl Semimetal TaIrTe
    Lai J; Ma J; Fan Z; Song X; Yu P; Liu Z; Zhang P; Shi Y; Cheng J; Sun D
    Adv Mater; 2022 Jul; 34(29):e2201229. PubMed ID: 35605244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Helicity-dependent photocurrent induced by the in-plane transverse electric current in an InAs quantum well.
    Li JB; Wu XG; Wang GW; Xu YQ; Niu ZC; Zhang XH
    Sci Rep; 2016 Aug; 6():31189. PubMed ID: 27501858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum Hall effect of Weyl fermions in n-type semiconducting tellurene.
    Qiu G; Niu C; Wang Y; Si M; Zhang Z; Wu W; Ye PD
    Nat Nanotechnol; 2020 Jul; 15(7):585-591. PubMed ID: 32601448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion Rules for Weyl Points and Nodal Lines in Topological Media.
    Sun XQ; Zhang SC; Bzdušek T
    Phys Rev Lett; 2018 Sep; 121(10):106402. PubMed ID: 30240246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of Weyl Nodes in Robust Type-II Weyl Semimetal WP_{2}.
    Yao MY; Xu N; Wu QS; Autès G; Kumar N; Strocov VN; Plumb NC; Radovic M; Yazyev OV; Felser C; Mesot J; Shi M
    Phys Rev Lett; 2019 May; 122(17):176402. PubMed ID: 31107063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct Evolutions of Weyl Fermion Quasiparticles and Fermi Arcs with Bulk Band Topology in Weyl Semimetals.
    Xu N; Autès G; Matt CE; Lv BQ; Yao MY; Bisti F; Strocov VN; Gawryluk D; Pomjakushina E; Conder K; Plumb NC; Radovic M; Qian T; Yazyev OV; Mesot J; Ding H; Shi M
    Phys Rev Lett; 2017 Mar; 118(10):106406. PubMed ID: 28339253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validity of Weyl fermion picture for transition metals monopnictides TaAs, TaP, NbAs, and NbP from ab initio studies.
    Grassano D; Pulci O; Mosca Conte A; Bechstedt F
    Sci Rep; 2018 Feb; 8(1):3534. PubMed ID: 29476113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chirality-Dependent Circular Photogalvanic Effect in Enantiomorphic 2D Organic-Inorganic Hybrid Perovskites.
    Huang PJ; Taniguchi K; Shigefuji M; Kobayashi T; Matsubara M; Sasagawa T; Sato H; Miyasaka H
    Adv Mater; 2021 Apr; 33(17):e2008611. PubMed ID: 33754374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.