These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36109551)

  • 21. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins.
    Bondy-Denomy J; Garcia B; Strum S; Du M; Rollins MF; Hidalgo-Reyes Y; Wiedenheft B; Maxwell KL; Davidson AR
    Nature; 2015 Oct; 526(7571):136-9. PubMed ID: 26416740
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA interference is controlled by R-loop length in a type I-F1 CRISPR-Cas system.
    Tuminauskaite D; Norkunaite D; Fiodorovaite M; Tumas S; Songailiene I; Tamulaitiene G; Sinkunas T
    BMC Biol; 2020 Jun; 18(1):65. PubMed ID: 32539804
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Covalent Modifications of the Bacteriophage Genome Confer a Degree of Resistance to Bacterial CRISPR Systems.
    Liu Y; Dai L; Dong J; Chen C; Zhu J; Rao VB; Tao P
    J Virol; 2020 Nov; 94(23):. PubMed ID: 32938767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anti-CRISPR AcrIE2 Binds the Type I-E CRISPR-Cas Complex But Does Not Block DNA Binding.
    Mejdani M; Pawluk A; Maxwell KL; Davidson AR
    J Mol Biol; 2021 Feb; 433(3):166759. PubMed ID: 33338493
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural and mechanistic insights into the CRISPR inhibition of AcrIF7.
    Kim I; Koo J; An SY; Hong S; Ka D; Kim EH; Bae E; Suh JY
    Nucleic Acids Res; 2020 Sep; 48(17):9959-9968. PubMed ID: 32810226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A 1.3 Å high-resolution crystal structure of an anti-CRISPR protein, AcrI E2.
    Lee SY; Kim GE; Kim YG; Park HH
    Biochem Biophys Res Commun; 2020 Dec; 533(4):751-757. PubMed ID: 32988588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural basis of AcrIF24 as an anti-CRISPR protein and transcriptional suppressor.
    Mukherjee IA; Gabel C; Noinaj N; Bondy-Denomy J; Chang L
    Nat Chem Biol; 2022 Dec; 18(12):1417-1424. PubMed ID: 36163386
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phage-Encoded Anti-CRISPR Defenses.
    Stanley SY; Maxwell KL
    Annu Rev Genet; 2018 Nov; 52():445-464. PubMed ID: 30208287
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Keeping crispr in check: diverse mechanisms of phage-encoded anti-crisprs.
    Trasanidou D; Gerós AS; Mohanraju P; Nieuwenweg AC; Nobrega FL; Staals RHJ
    FEMS Microbiol Lett; 2019 May; 366(9):. PubMed ID: 31077304
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The solution structure of an anti-CRISPR protein.
    Maxwell KL; Garcia B; Bondy-Denomy J; Bona D; Hidalgo-Reyes Y; Davidson AR
    Nat Commun; 2016 Oct; 7():13134. PubMed ID: 27725669
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Different genetic and morphological outcomes for phages targeted by single or multiple CRISPR-Cas spacers.
    Watson BNJ; Easingwood RA; Tong B; Wolf M; Salmond GPC; Staals RHJ; Bostina M; Fineran PC
    Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180090. PubMed ID: 30905290
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ecology and evolution of phages encoding anti-CRISPR proteins.
    Pons BJ; van Houte S; Westra ER; Chevallereau A
    J Mol Biol; 2023 Apr; 435(7):167974. PubMed ID: 36690071
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage.
    Meeske AJ; Nakandakari-Higa S; Marraffini LA
    Nature; 2019 Jun; 570(7760):241-245. PubMed ID: 31142834
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of Different Target Sequences on Type III CRISPR-Cas Immunity.
    Maniv I; Jiang W; Bikard D; Marraffini LA
    J Bacteriol; 2016 Jan; 198(6):941-50. PubMed ID: 26755632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural basis for inhibition of the type I-F CRISPR-Cas surveillance complex by AcrIF4, AcrIF7 and AcrIF14.
    Gabel C; Li Z; Zhang H; Chang L
    Nucleic Acids Res; 2021 Jan; 49(1):584-594. PubMed ID: 33332569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The structure of AcrIE4-F7 reveals a common strategy for dual CRISPR inhibition by targeting PAM recognition sites.
    Hong SH; Lee G; Park C; Koo J; Kim EH; Bae E; Suh JY
    Nucleic Acids Res; 2022 Feb; 50(4):2363-2376. PubMed ID: 35166843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3.
    Gong B; Shin M; Sun J; Jung CH; Bolt EL; van der Oost J; Kim JS
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16359-64. PubMed ID: 25368186
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anti-CRISPR prediction using deep learning reveals an inhibitor of Cas13b nucleases.
    Wandera KG; Alkhnbashi OS; Bassett HVI; Mitrofanov A; Hauns S; Migur A; Backofen R; Beisel CL
    Mol Cell; 2022 Jul; 82(14):2714-2726.e4. PubMed ID: 35649413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The biology and type I/III hybrid nature of type I-D CRISPR-Cas systems.
    McBride TM; Cameron SC; Fineran PC; Fagerlund RD
    Biochem J; 2023 Apr; 480(7):471-488. PubMed ID: 37052300
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species.
    Pawluk A; Staals RH; Taylor C; Watson BN; Saha S; Fineran PC; Maxwell KL; Davidson AR
    Nat Microbiol; 2016 Jun; 1(8):16085. PubMed ID: 27573108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.