These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 36109577)
1. A radiomics-based study for differentiating parasellar cavernous hemangiomas from meningiomas. Wang C; You L; Zhang X; Zhu Y; Zheng L; Huang W; Guo D; Dong Y Sci Rep; 2022 Sep; 12(1):15509. PubMed ID: 36109577 [TBL] [Abstract][Full Text] [Related]
2. Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging. Park YW; Oh J; You SC; Han K; Ahn SS; Choi YS; Chang JH; Kim SH; Lee SK Eur Radiol; 2019 Aug; 29(8):4068-4076. PubMed ID: 30443758 [TBL] [Abstract][Full Text] [Related]
3. Meningiomas: Preoperative predictive histopathological grading based on radiomics of MRI. Han Y; Wang T; Wu P; Zhang H; Chen H; Yang C Magn Reson Imaging; 2021 Apr; 77():36-43. PubMed ID: 33220449 [TBL] [Abstract][Full Text] [Related]
4. Preoperative prediction of CNS WHO grade and tumour aggressiveness in intracranial meningioma based on radiomics and structured semantics. Kalasauskas D; Kosterhon M; Kurz E; Schmidt L; Altmann S; Grauhan NF; Sommer C; Othman A; Brockmann MA; Ringel F; Keric N Sci Rep; 2024 Sep; 14(1):20586. PubMed ID: 39232068 [TBL] [Abstract][Full Text] [Related]
5. Machine learning-based radiomics analysis in predicting the meningioma grade using multiparametric MRI. Hu J; Zhao Y; Li M; Liu J; Wang F; Weng Q; Wang X; Cao D Eur J Radiol; 2020 Oct; 131():109251. PubMed ID: 32916409 [TBL] [Abstract][Full Text] [Related]
6. Presurgical differentiation between malignant haemangiopericytoma and angiomatous meningioma by a radiomics approach based on texture analysis. Li X; Lu Y; Xiong J; Wang D; She D; Kuai X; Geng D; Yin B J Neuroradiol; 2019 Sep; 46(5):281-287. PubMed ID: 31226327 [TBL] [Abstract][Full Text] [Related]
7. Radiomics analysis of T1WI and T2WI magnetic resonance images to differentiate between IgG4-related ophthalmic disease and orbital MALT lymphoma. Shao Y; Chen Y; Chen S; Wei R BMC Ophthalmol; 2023 Jun; 23(1):288. PubMed ID: 37353736 [TBL] [Abstract][Full Text] [Related]
8. Radiomic Features of the Edema Region May Contribute to Grading Meningiomas With Peritumoral Edema. Guo Z; Tian Z; Shi F; Xu P; Zhang J; Ling C; Zeng Q J Magn Reson Imaging; 2023 Jul; 58(1):301-310. PubMed ID: 36259547 [TBL] [Abstract][Full Text] [Related]
9. Comparison of machine learning classifiers for differentiation of grade 1 from higher gradings in meningioma: A multicenter radiomics study. Hamerla G; Meyer HJ; Schob S; Ginat DT; Altman A; Lim T; Gihr GA; Horvath-Rizea D; Hoffmann KT; Surov A Magn Reson Imaging; 2019 Nov; 63():244-249. PubMed ID: 31425811 [TBL] [Abstract][Full Text] [Related]
10. Development and validation of a prediction model for malignant sinonasal tumors based on MR radiomics and machine learning. Wang Y; Han Q; Wen B; Yang B; Zhang C; Song Y; Zhang L; Xian J Eur Radiol; 2024 Aug; ():. PubMed ID: 39210161 [TBL] [Abstract][Full Text] [Related]
11. A deep learning radiomics model may help to improve the prediction performance of preoperative grading in meningioma. Yang L; Xu P; Zhang Y; Cui N; Wang M; Peng M; Gao C; Wang T Neuroradiology; 2022 Jul; 64(7):1373-1382. PubMed ID: 35037985 [TBL] [Abstract][Full Text] [Related]
12. Deep learning-based automatic segmentation of meningioma from T1-weighted contrast-enhanced MRI for preoperative meningioma differentiation using radiomic features. Yang L; Wang T; Zhang J; Kang S; Xu S; Wang K BMC Med Imaging; 2024 Mar; 24(1):56. PubMed ID: 38443817 [TBL] [Abstract][Full Text] [Related]
13. Radiomics Analysis of Multiparametric MRI for Prediction of Synchronous Lung Metastases in Osteosarcoma. Luo Z; Li J; Liao Y; Liu R; Shen X; Chen W Front Oncol; 2022; 12():802234. PubMed ID: 35273911 [TBL] [Abstract][Full Text] [Related]
14. Accuracy of Radiomics-Based Feature Analysis on Multiparametric Magnetic Resonance Images for Noninvasive Meningioma Grading. Laukamp KR; Shakirin G; Baeßler B; Thiele F; Zopfs D; Große Hokamp N; Timmer M; Kabbasch C; Perkuhn M; Borggrefe J World Neurosurg; 2019 Dec; 132():e366-e390. PubMed ID: 31476455 [TBL] [Abstract][Full Text] [Related]
15. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods. Wang X; Wan Q; Chen H; Li Y; Li X Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795 [TBL] [Abstract][Full Text] [Related]
16. Predicting peritumoral edema development after gamma knife radiosurgery of meningiomas using machine learning methods: a multicenter study. Li X; Lu Y; Liu L; Wang D; Zhao Y; Mei N; Geng D; Ma X; Zheng W; Duan S; Wu PY; Wen H; Tan Y; Sun X; Sun S; Li Z; Yu T; Yin B Eur Radiol; 2023 Dec; 33(12):8912-8924. PubMed ID: 37498381 [TBL] [Abstract][Full Text] [Related]
17. MRI-Based Radiomics for Differentiating Orbital Cavernous Hemangioma and Orbital Schwannoma. Chen L; Shen Y; Huang X; Li H; Li J; Wei R; Yang W Front Med (Lausanne); 2021; 8():795038. PubMed ID: 34977096 [No Abstract] [Full Text] [Related]
18. Changes in radiomic and radiologic features in meningiomas after radiation therapy. Jo SW; Kim ES; Yoon DY; Kwon MJ BMC Med Imaging; 2023 Oct; 23(1):164. PubMed ID: 37858048 [TBL] [Abstract][Full Text] [Related]
19. MRI radiomics-based machine learning model integrated with clinic-radiological features for preoperative differentiation of sinonasal inverted papilloma and malignant sinonasal tumors. Gu J; Yu Q; Li Q; Peng J; Lv F; Gong B; Zhang X Front Oncol; 2022; 12():1003639. PubMed ID: 36212455 [TBL] [Abstract][Full Text] [Related]
20. Application and Clinical Value of Machine Learning-Based Cervical Cancer Diagnosis and Prediction Model in Adjuvant Chemotherapy for Cervical Cancer: A Single-Center, Controlled, Non-Arbitrary Size Case-Control Study. Wang Y; Shen L; Jin J; Wang G Contrast Media Mol Imaging; 2022; 2022():2432291. PubMed ID: 35821886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]