These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36109930)

  • 1. Optimal linear cyclic quantum heat engines cannot benefit from strong coupling.
    Liu J; Jung KA
    Phys Rev E; 2022 Aug; 106(2):L022105. PubMed ID: 36109930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Carnot thermal machines reexamined: Definition of efficiency and the effects of strong coupling.
    Liu J; Jung KA
    Phys Rev E; 2024 Apr; 109(4-1):044118. PubMed ID: 38755899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-level laser heat engine at optimal performance with ecological function.
    Singh V; Johal RS
    Phys Rev E; 2019 Jul; 100(1-1):012138. PubMed ID: 31499856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency at maximum power output of linear irreversible Carnot-like heat engines.
    Wang Y; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universal Bounds on Fluctuations in Continuous Thermal Machines.
    Saryal S; Gerry M; Khait I; Segal D; Agarwalla BK
    Phys Rev Lett; 2021 Nov; 127(19):190603. PubMed ID: 34797144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite-power performance of quantum heat engines in linear response.
    Liu Q; He J; Ma Y; Wang J
    Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periodic thermodynamics of open quantum systems.
    Brandner K; Seifert U
    Phys Rev E; 2016 Jun; 93(6):062134. PubMed ID: 27415235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endoreversible quantum heat engines in the linear response regime.
    Wang H; He J; Wang J
    Phys Rev E; 2017 Jul; 96(1-1):012152. PubMed ID: 29347192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Route towards the optimization at given power of thermoelectric heat engines with broken time-reversal symmetry.
    Zhang R; Li QW; Tang FR; Yang XQ; Bai L
    Phys Rev E; 2017 Aug; 96(2-1):022133. PubMed ID: 28950616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum engine efficiency bound beyond the second law of thermodynamics.
    Niedenzu W; Mukherjee V; Ghosh A; Kofman AG; Kurizki G
    Nat Commun; 2018 Jan; 9(1):165. PubMed ID: 29323109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stationary engines in and beyond the linear response regime at the Carnot efficiency.
    Shiraishi N
    Phys Rev E; 2017 May; 95(5-1):052128. PubMed ID: 28618475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Irreversible entropy production in low- and high-dissipation heat engines and the problem of the Curzon-Ahlborn efficiency.
    Gerstenmaier YC
    Phys Rev E; 2021 Mar; 103(3-1):032141. PubMed ID: 33862798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong system-bath coupling effects in quantum absorption refrigerators.
    Ivander F; Anto-Sztrikacs N; Segal D
    Phys Rev E; 2022 Mar; 105(3-1):034112. PubMed ID: 35428056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum Otto cycle under strong coupling.
    Kaneyasu M; Hasegawa Y
    Phys Rev E; 2023 Apr; 107(4-1):044127. PubMed ID: 37198760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiency Bounds for Minimally Nonlinear Irreversible Heat Engines with Broken Time-Reversal Symmetry.
    Liu Q; Li W; Zhang M; He J; Wang J
    Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime.
    Yamamoto K; Hatano N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042165. PubMed ID: 26565226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum dynamical framework for Brownian heat engines.
    Agarwal GS; Chaturvedi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012130. PubMed ID: 23944437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum heat engine power can be increased by noise-induced coherence.
    Scully MO; Chapin KR; Dorfman KE; Kim MB; Svidzinsky A
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15097-100. PubMed ID: 21876187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines.
    Kato A; Tanimura Y
    J Chem Phys; 2016 Dec; 145(22):224105. PubMed ID: 27984915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine.
    Xu YY; Chen B; Liu J
    Phys Rev E; 2018 Feb; 97(2-1):022130. PubMed ID: 29548214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.