These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36109935)

  • 1. Fluid flow at interfaces driven by thermal gradients.
    Anzini P; Filiberti Z; Parola A
    Phys Rev E; 2022 Aug; 106(2-1):024116. PubMed ID: 36109935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal Forces from a Microscopic Perspective.
    Anzini P; Colombo GM; Filiberti Z; Parola A
    Phys Rev Lett; 2019 Jul; 123(2):028002. PubMed ID: 31386498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soret separation and thermo-osmosis in porous media.
    Hafskjold B; Bedeaux D; Kjelstrup S; Wilhelmsen Ø
    Eur Phys J E Soft Matter; 2022 May; 45(5):41. PubMed ID: 35503580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hamiltonian Transformation to Compute Thermo-osmotic Forces.
    Ganti R; Liu Y; Frenkel D
    Phys Rev Lett; 2018 Aug; 121(6):068002. PubMed ID: 30141645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal orientation and thermophoresis of anisotropic colloids: The role of the internal composition.
    Gittus OR; Olarte-Plata JD; Bresme F
    Eur Phys J E Soft Matter; 2019 Jul; 42(7):90. PubMed ID: 31312925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermo-osmosis of a near-critical binary fluid mixture: A general formulation and universal flow direction.
    Yabunaka S; Fujitani Y
    Phys Rev E; 2024 Jun; 109(6-1):064610. PubMed ID: 39021031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computation of thermodynamic and transport properties to predict thermophoretic effects in an argon-krypton mixture.
    Miller NA; Daivis PJ; Snook IK; Todd BD
    J Chem Phys; 2013 Oct; 139(14):144504. PubMed ID: 24116632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple statistical-mechanical interpretation of Onsager reciprocal relations and Derjaguin theory of thermo-osmosis.
    Farago O
    Eur Phys J E Soft Matter; 2019 Oct; 42(10):136. PubMed ID: 31650276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Net Unidirectional Fluid Transport in Locally Heated Nanochannel by Thermo-osmosis.
    Wang X; Liu M; Jing D; Mohamad A; Prezhdo O
    Nano Lett; 2020 Dec; 20(12):8965-8971. PubMed ID: 33231457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermo-Osmosis in Charged Nanochannels: Effects of Surface Charge and Ionic Strength.
    Chen WQ; Jivkov AP; Sedighi M
    ACS Appl Mater Interfaces; 2023 Jul; 15(28):34159-34171. PubMed ID: 37428544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels.
    Wu C; Xu X; Qian T
    J Phys Condens Matter; 2013 May; 25(19):195103. PubMed ID: 23552493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface hydrophilicity-mediated migration of nano/microparticles under temperature gradient in a confined space.
    Xu H; Zheng X; Shi X
    J Colloid Interface Sci; 2023 May; 637():489-499. PubMed ID: 36724663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alkali halide solutions under thermal gradients: soret coefficients and heat transfer mechanisms.
    Römer F; Wang Z; Wiegand S; Bresme F
    J Phys Chem B; 2013 Jul; 117(27):8209-22. PubMed ID: 23758489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water thermophoresis in carbon nanotubes: the interplay between thermophoretic and friction forces.
    Oyarzua E; Walther JH; Zambrano HA
    Phys Chem Chem Phys; 2018 Jan; 20(5):3672-3677. PubMed ID: 29344599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermo-osmosis in hydrophilic nanochannels: mechanism and size effect.
    Chen WQ; Sedighi M; Jivkov AP
    Nanoscale; 2021 Jan; 13(3):1696-1716. PubMed ID: 33427268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal Gradients on Graphene to Drive Nanoflake Motion.
    Becton M; Wang X
    J Chem Theory Comput; 2014 Feb; 10(2):722-30. PubMed ID: 26580049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-equilibrium molecular dynamics of steady-state fluid transport through a 2D membrane driven by a concentration gradient.
    Rankin DJ; Huang DM
    J Chem Phys; 2023 Dec; 159(21):. PubMed ID: 38038206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermostating highly confined fluids.
    Bernardi S; Todd BD; Searles DJ
    J Chem Phys; 2010 Jun; 132(24):244706. PubMed ID: 20590213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscopic derivation of coarse-grained, energy-conserving generalized Langevin dynamics.
    Izvekov S
    J Chem Phys; 2019 Sep; 151(10):104109. PubMed ID: 31521077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deconstructing Temperature Gradients across Fluid Interfaces: The Structural Origin of the Thermal Resistance of Liquid-Vapor Interfaces.
    Muscatello J; Chacón E; Tarazona P; Bresme F
    Phys Rev Lett; 2017 Jul; 119(4):045901. PubMed ID: 29341757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.