These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 36109935)
21. Pressure gradients fail to predict diffusio-osmosis. Liu Y; Ganti R; Frenkel D J Phys Condens Matter; 2018 May; 30(20):205002. PubMed ID: 29637907 [TBL] [Abstract][Full Text] [Related]
22. Temperature Gradients Drive Bulk Flow Within Microchannel Lined by Fluid-Fluid Interfaces. Amador GJ; Ren Z; Tabak AF; Alapan Y; Yasa O; Sitti M Small; 2019 May; 15(21):e1900472. PubMed ID: 30993841 [TBL] [Abstract][Full Text] [Related]
23. Fluid transport in nanochannels induced by temperature gradients. Liu C; Lv Y; Li Z J Chem Phys; 2012 Mar; 136(11):114506. PubMed ID: 22443776 [TBL] [Abstract][Full Text] [Related]
24. Microscopic analysis of thermo-orientation in systems of off-centre Lennard-Jones particles. Jack RL; Wirnsberger P; Reinhardt A J Chem Phys; 2019 Apr; 150(13):134501. PubMed ID: 30954044 [TBL] [Abstract][Full Text] [Related]
25. Computational fluid dynamic simulation of two-fluid non-Newtonian nanohemodynamics through a diseased artery with a stenosis and aneurysm. Dubey A; Vasu B; Anwar Bég O; Gorla RSR; Kadir A Comput Methods Biomech Biomed Engin; 2020 Jun; 23(8):345-371. PubMed ID: 32098508 [TBL] [Abstract][Full Text] [Related]
26. Optical fluid and biomolecule transport with thermal fields. Weinert FM; Mast CB; Braun D Phys Chem Chem Phys; 2011 Jun; 13(21):9918-28. PubMed ID: 21240434 [TBL] [Abstract][Full Text] [Related]
27. Statistical mechanical theory for the structure of steady state systems: application to a Lennard-Jones fluid with applied temperature gradient. Attard P J Chem Phys; 2004 Oct; 121(15):7076-85. PubMed ID: 15473773 [TBL] [Abstract][Full Text] [Related]
28. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices. Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716 [TBL] [Abstract][Full Text] [Related]
29. Thermo-osmotic pressure and resistance to mass transport in a vapor-gap membrane. Rauter MT; Schnell SK; Hafskjold B; Kjelstrup S Phys Chem Chem Phys; 2021 Jun; 23(23):12988-13000. PubMed ID: 34085062 [TBL] [Abstract][Full Text] [Related]
30. Chemically driven fluid transport in long microchannels. Shen M; Ye F; Liu R; Chen K; Yang M; Ripoll M J Chem Phys; 2016 Sep; 145(12):124119. PubMed ID: 27782664 [TBL] [Abstract][Full Text] [Related]
31. Transport coefficients for granular media from molecular dynamics simulations. Bizon C; Shattuck MD; Swift JB; Swinney HL Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt B):4340-51. PubMed ID: 11970288 [TBL] [Abstract][Full Text] [Related]
32. Microscopic Marangoni Flows Cannot Be Predicted on the Basis of Pressure Gradients. Liu Y; Ganti R; Burton HGA; Zhang X; Wang W; Frenkel D Phys Rev Lett; 2017 Dec; 119(22):224502. PubMed ID: 29286822 [TBL] [Abstract][Full Text] [Related]
33. Simultaneous pressure and electro-osmosis driven flow in charged porous media: Pore-scale effects on mixing and dispersion. Godinez-Brizuela OE; Niasar VJ J Colloid Interface Sci; 2020 Mar; 561():162-172. PubMed ID: 31812862 [TBL] [Abstract][Full Text] [Related]
34. Thermal conductivity of highly asymmetric binary mixtures: how important are heat/mass coupling effects? Armstrong J; Bresme F Phys Chem Chem Phys; 2014 Jun; 16(24):12307-16. PubMed ID: 24818599 [TBL] [Abstract][Full Text] [Related]
35. Thermal transpiration through single walled carbon nanotubes and graphene channels. Thekkethala JF; Sathian SP J Chem Phys; 2013 Nov; 139(17):174712. PubMed ID: 24206327 [TBL] [Abstract][Full Text] [Related]
36. Unraveling the Operational Mechanisms of Chemically Propelled Motors with Micropumps. Esplandiu MJ; Zhang K; Fraxedas J; Sepulveda B; Reguera D Acc Chem Res; 2018 Sep; 51(9):1921-1930. PubMed ID: 30192137 [TBL] [Abstract][Full Text] [Related]
37. Numerical simulation of gas-phonon coupling in thermal transpiration flows. Guo X; Singh D; Murthy J; Alexeenko AA Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046310. PubMed ID: 19905439 [TBL] [Abstract][Full Text] [Related]
38. Pressure tensor and heat flux vector for inhomogeneous nonequilibrium fluids under the influence of three-body forces. Zhang J; Todd BD Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031111. PubMed ID: 15089269 [TBL] [Abstract][Full Text] [Related]
39. Thermocapillary migration in small-scale temperature gradients: application to optofluidic drop dispensing. Robert de Saint Vincent M; Delville JP Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026310. PubMed ID: 22463320 [TBL] [Abstract][Full Text] [Related]
40. Molecular alignment in molecular fluids induced by coupling between density and thermal gradients. Daub CD; Tafjord J; Kjelstrup S; Bedeaux D; Bresme F Phys Chem Chem Phys; 2016 Apr; 18(17):12213-20. PubMed ID: 27079162 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]