These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36109960)

  • 1. Optimization of asymmetric quantum Otto engine cycles.
    Shastri R; Venkatesh BP
    Phys Rev E; 2022 Aug; 106(2-1):024123. PubMed ID: 36109960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bounds on fluctuations for finite-time quantum Otto cycle.
    Saryal S; Agarwalla BK
    Phys Rev E; 2021 Jun; 103(6):L060103. PubMed ID: 34271746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Quantum Friction and Optimal Finite-Time Performance of the Quantum Otto Cycle.
    Insinga AR
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Otto-type heat engine with fixed frequency.
    Matos RQ; de Assis RJ; de Almeida NG
    Phys Rev E; 2023 Nov; 108(5-1):054131. PubMed ID: 38115429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bounds on nonequilibrium fluctuations for asymmetrically driven quantum Otto engines.
    Mohanta S; Saha M; Venkatesh BP; Agarwalla BK
    Phys Rev E; 2023 Jul; 108(1-1):014118. PubMed ID: 37583162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitored nonadiabatic and coherent-controlled quantum unital Otto heat engines: First four cumulants.
    El Makouri A; Slaoui A; Ahl Laamara R
    Phys Rev E; 2023 Oct; 108(4-1):044114. PubMed ID: 37978648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling work output and coherence in finite-time quantum Otto engines through monitoring.
    Shastri R; Venkatesh BP
    Phys Rev E; 2024 Jan; 109(1-1):014102. PubMed ID: 38366526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unified trade-off optimization of quantum harmonic Otto engine and refrigerator.
    Singh V; Singh S; Abah O; Müstecaplıoğlu ÖE
    Phys Rev E; 2022 Aug; 106(2-1):024137. PubMed ID: 36110016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence of discontinuities in the performance of finite-time quantum Otto cycles.
    Zheng Y; Hänggi P; Poletti D
    Phys Rev E; 2016 Jul; 94(1-1):012137. PubMed ID: 27575106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting the performance of quantum Otto heat engines.
    Chen JF; Sun CP; Dong H
    Phys Rev E; 2019 Sep; 100(3-1):032144. PubMed ID: 31640026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Otto Engine: Classical and Quantum Approach.
    Peña FJ; Negrete O; Cortés N; Vargas P
    Entropy (Basel); 2020 Jul; 22(7):. PubMed ID: 33286527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasistatic and quantum-adiabatic Otto engine for a two-dimensional material: The case of a graphene quantum dot.
    Peña FJ; Zambrano D; Negrete O; De Chiara G; Orellana PA; Vargas P
    Phys Rev E; 2020 Jan; 101(1-1):012116. PubMed ID: 32069598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance bounds of nonadiabatic quantum harmonic Otto engine and refrigerator under a squeezed thermal reservoir.
    Singh V; Müstecaplıoğlu ÖE
    Phys Rev E; 2020 Dec; 102(6-1):062123. PubMed ID: 33466082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum mechanical bound for efficiency of quantum Otto heat engine.
    Park JM; Lee S; Chun HM; Noh JD
    Phys Rev E; 2019 Jul; 100(1-1):012148. PubMed ID: 31499873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of Quantum Heat Engines Enhanced by Adiabatic Deformation of Trapping Potential.
    Xiao Y; Li K; He J; Wang J
    Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of quantum heat engines under the influence of long-range interactions.
    Wang Q
    Phys Rev E; 2020 Jul; 102(1-1):012138. PubMed ID: 32794960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamical analysis of a quantum heat engine based on harmonic oscillators.
    Insinga A; Andresen B; Salamon P
    Phys Rev E; 2016 Jul; 94(1-1):012119. PubMed ID: 27575089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin.
    Altintas F; Müstecaplıoğlu ÖE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022142. PubMed ID: 26382378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency at maximum power of a heat engine working with a two-level atomic system.
    Wang R; Wang J; He J; Ma Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042119. PubMed ID: 23679385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum Heat Engines with Complex Working Media, Complete Otto Cycles and Heuristics.
    Johal RS; Mehta V
    Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.