These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36109960)

  • 21. Full statistics of nonequilibrium heat and work for many-body quantum Otto engines and universal bounds: A nonequilibrium Green's function approach.
    Mohanta S; Agarwalla BK
    Phys Rev E; 2023 Dec; 108(6-1):064127. PubMed ID: 38243491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Work and efficiency fluctuations in a quantum Otto cycle with idle levels.
    Anka MF; de Oliveira TR; Jonathan D
    Phys Rev E; 2024 Jun; 109(6-1):064129. PubMed ID: 39021004
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonadiabatic coupled-qubit Otto cycle with bidirectional operation and efficiency gains.
    Cherubim C; de Oliveira TR; Jonathan D
    Phys Rev E; 2022 Apr; 105(4-1):044120. PubMed ID: 35590646
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurement-based quantum Otto engine with a two-spin system coupled by anisotropic interaction: Enhanced efficiency at finite times.
    Purkait C; Biswas A
    Phys Rev E; 2023 May; 107(5-1):054110. PubMed ID: 37329072
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantum Otto engine working with interacting spin systems: Finite power performance in stochastic thermodynamics.
    Hong Y; Xiao Y; He J; Wang J
    Phys Rev E; 2020 Aug; 102(2-1):022143. PubMed ID: 32942459
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shortcut-to-adiabaticity Otto engine: A twist to finite-time thermodynamics.
    Abah O; Paternostro M
    Phys Rev E; 2019 Feb; 99(2-1):022110. PubMed ID: 30934342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimal Power and Efficiency of Multi-Stage Endoreversible Quantum Carnot Heat Engine with Harmonic Oscillators at the Classical Limit.
    Meng Z; Chen L; Wu F
    Entropy (Basel); 2020 Apr; 22(4):. PubMed ID: 33286231
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative study of quantum Otto and Carnot engines powered by a spin working substance.
    Abd-Rabbou MY; Rahman AU; Yurischev MA; Haddadi S
    Phys Rev E; 2023 Sep; 108(3-1):034106. PubMed ID: 37849157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-Markovian thermal operations boosting the performance of quantum heat engines.
    Ptaszyński K
    Phys Rev E; 2022 Jul; 106(1-1):014114. PubMed ID: 35974499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Performance of Universal Reciprocating Heat-Engine Cycle with Variable Specific Heats Ratio of Working Fluid.
    Chen L; Ge Y; Liu C; Feng H; Lorenzini G
    Entropy (Basel); 2020 Mar; 22(4):. PubMed ID: 33286171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finite-time quantum Otto engine: Surpassing the quasistatic efficiency due to friction.
    Lee S; Ha M; Park JM; Jeong H
    Phys Rev E; 2020 Feb; 101(2-1):022127. PubMed ID: 32168587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum Performance of Thermal Machines over Many Cycles.
    Watanabe G; Venkatesh BP; Talkner P; Del Campo A
    Phys Rev Lett; 2017 Feb; 118(5):050601. PubMed ID: 28211713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Achieve higher efficiency at maximum power with finite-time quantum Otto cycle.
    Chen JF; Sun CP; Dong H
    Phys Rev E; 2019 Dec; 100(6-1):062140. PubMed ID: 31962481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational Issues of Quantum Heat Engines with Non-Harmonic Working Medium.
    Insinga AR; Andresen B; Salamon P
    Entropy (Basel); 2024 Apr; 26(5):. PubMed ID: 38785608
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Autonomous quantum heat engine based on non-Markovian dynamics of an optomechanical Hamiltonian.
    Rasola M; Möttönen M
    Sci Rep; 2024 Apr; 14(1):9448. PubMed ID: 38658607
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Powering quantum Otto engines only with q-deformation of the working substance.
    Ozaydin F; Müstecaplıoğlu ÖE; Hakioğlu T
    Phys Rev E; 2023 Nov; 108(5-1):054103. PubMed ID: 38115457
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetic Otto Engine for an Electron in a Quantum Dot: Classical and Quantum Approach.
    Peña FJ; Negrete O; Alvarado Barrios G; Zambrano D; González A; Nunez AS; Orellana PA; Vargas P
    Entropy (Basel); 2019 May; 21(5):. PubMed ID: 33267226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finite-time performance of a single-ion quantum Otto engine.
    Chand S; Dasgupta S; Biswas A
    Phys Rev E; 2021 Mar; 103(3-1):032144. PubMed ID: 33862721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantum correlated heat engine with spin squeezing.
    Altintas F; Hardal AÜ; Müstecaplıoglu ÖE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032102. PubMed ID: 25314390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics.
    Wu F; He J; Ma Y; Wang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062134. PubMed ID: 25615071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.