These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 36109996)
1. Controlling thermodynamics of a quantum heat engine with modulated amplitude drivings. Giri SK; Goswami HP Phys Rev E; 2022 Aug; 106(2-1):024131. PubMed ID: 36109996 [TBL] [Abstract][Full Text] [Related]
2. Geometric phaselike effects in a quantum heat engine. Giri SK; Goswami HP Phys Rev E; 2017 Nov; 96(5-1):052129. PubMed ID: 29347686 [TBL] [Abstract][Full Text] [Related]
3. Nonequilibrium fluctuations of a driven quantum heat engine via machine learning. Giri SK; Goswami HP Phys Rev E; 2019 Feb; 99(2-1):022104. PubMed ID: 30934252 [TBL] [Abstract][Full Text] [Related]
4. Minimal universal quantum heat machine. Gelbwaser-Klimovsky D; Alicki R; Kurizki G Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012140. PubMed ID: 23410316 [TBL] [Abstract][Full Text] [Related]
5. Finite-power performance of quantum heat engines in linear response. Liu Q; He J; Ma Y; Wang J Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858 [TBL] [Abstract][Full Text] [Related]
6. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine. Xu YY; Chen B; Liu J Phys Rev E; 2018 Feb; 97(2-1):022130. PubMed ID: 29548214 [TBL] [Abstract][Full Text] [Related]
7. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases. Chen L; Meng Z; Ge Y; Wu F Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33925622 [TBL] [Abstract][Full Text] [Related]
8. Experimental test of power-efficiency trade-off in a finite-time Carnot cycle. Zhai RX; Cui FM; Ma YH; Sun CP; Dong H Phys Rev E; 2023 Apr; 107(4):L042101. PubMed ID: 37198805 [TBL] [Abstract][Full Text] [Related]
9. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators. Gelbwaser-Klimovsky D; Kurizki G Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022102. PubMed ID: 25215684 [TBL] [Abstract][Full Text] [Related]
10. Geometric Bound on the Efficiency of Irreversible Thermodynamic Cycles. Frim AG; DeWeese MR Phys Rev Lett; 2022 Jun; 128(23):230601. PubMed ID: 35749204 [TBL] [Abstract][Full Text] [Related]
11. Quantum heat engine power can be increased by noise-induced coherence. Scully MO; Chapin KR; Dorfman KE; Kim MB; Svidzinsky A Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15097-100. PubMed ID: 21876187 [TBL] [Abstract][Full Text] [Related]
12. Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence. Dorfman KE; Xu D; Cao J Phys Rev E; 2018 Apr; 97(4-1):042120. PubMed ID: 29758726 [TBL] [Abstract][Full Text] [Related]
13. Two coupled, driven Ising spin systems working as an engine. Basu D; Nandi J; Jayannavar AM; Marathe R Phys Rev E; 2017 May; 95(5-1):052123. PubMed ID: 28618631 [TBL] [Abstract][Full Text] [Related]
14. Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system. Wang R; Wang J; He J; Ma Y Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021133. PubMed ID: 23005748 [TBL] [Abstract][Full Text] [Related]
15. Weighted reciprocal of temperature, weighted thermal flux, and their applications in finite-time thermodynamics. Sheng S; Tu ZC Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012129. PubMed ID: 24580194 [TBL] [Abstract][Full Text] [Related]
16. Geometric bounds on the power of adiabatic thermal machines. Eglinton J; Brandner K Phys Rev E; 2022 May; 105(5):L052102. PubMed ID: 35706185 [TBL] [Abstract][Full Text] [Related]
17. Quantum mechanical bound for efficiency of quantum Otto heat engine. Park JM; Lee S; Chun HM; Noh JD Phys Rev E; 2019 Jul; 100(1-1):012148. PubMed ID: 31499873 [TBL] [Abstract][Full Text] [Related]
18. Quantum Finite-Time Thermodynamics: Insight from a Single Qubit Engine. Dann R; Kosloff R; Salamon P Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287023 [TBL] [Abstract][Full Text] [Related]
19. Finite-time performance of a quantum heat engine with a squeezed thermal bath. Wang J; He J; Ma Y Phys Rev E; 2019 Nov; 100(5-1):052126. PubMed ID: 31870038 [TBL] [Abstract][Full Text] [Related]
20. Periodic thermodynamics of open quantum systems. Brandner K; Seifert U Phys Rev E; 2016 Jun; 93(6):062134. PubMed ID: 27415235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]