These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 3611076)

  • 1. Determination of the P/2e- stoichiometries at the individual coupling sites in mitochondrial oxidative phosphorylation. Evidence for maximum values of 1.0, 0.5, and 1.0 at sites 1, 2, and 3.
    Stoner CD
    J Biol Chem; 1987 Aug; 262(22):10445-53. PubMed ID: 3611076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic stoichiometry of yeast mitochondrial oxidative phosphorylation.
    Fitton V; Rigoulet M; Ouhabi R; Guérin B
    Biochemistry; 1994 Aug; 33(32):9692-8. PubMed ID: 8068647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sum of flux control coefficients in the electron-transport chain of mitochondria.
    Brand MD; Vallis BP; Kesseler A
    Eur J Biochem; 1994 Dec; 226(3):819-29. PubMed ID: 7813471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of oligomycin-inhibited respiration of isolated rat liver mitochondria to perfluidone, a fluorinated arylalkylsulfonamide.
    Olorunsogo OO; Malomo SO
    Toxicology; 1985 Jun; 35(3):231-40. PubMed ID: 3160138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudomonas aeruginosa lipopolysaccharide: an uncoupler of mitochondrial oxidative phosphorylation.
    Greer GG; Milazzo FH
    Can J Microbiol; 1975 Jun; 21(6):877-83. PubMed ID: 807306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fuscin, an inhibitor of respiration and oxidative phosphorylation in ox-neck muscle mitochondria.
    Cheah KS
    Biochim Biophys Acta; 1972 Jul; 275(1):1-9. PubMed ID: 5049017
    [No Abstract]   [Full Text] [Related]  

  • 7. Structural requirements in the uncoupling of oxidative phosphorylation by N,N'-bis(dichloroacetyl) diamines.
    Merola AJ; Hwang KM; Jurkowitz M; Brierley GP
    Biochem Pharmacol; 1971 Jul; 20(7):1393-403. PubMed ID: 5163079
    [No Abstract]   [Full Text] [Related]  

  • 8. Acute effects of hypoxia and phosphate on two populations of heart mitochondria.
    Duan JM; Karmazyn M
    Mol Cell Biochem; 1989 Oct; 90(1):47-56. PubMed ID: 2608032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Existence of 2 sites of oxidative phosphorylation in Trypanosoma cruzi].
    Affranchino JL; Stoppani AO
    Rev Argent Microbiol; 1985; 17(2):81-7. PubMed ID: 3916670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of mitochondrial oxidation and uncoupling of phosphorylation by antispermatogenic bis-dichloroacetamides.
    Merola AJ; Brierley GP
    Biochem Pharmacol; 1970 Apr; 19(4):1429-42. PubMed ID: 4327764
    [No Abstract]   [Full Text] [Related]  

  • 11. Steady-state kinetics of the overall oxidative phosphorylation reaction in heart mitochondria. Evidence for linkage of the energy-yielding and energy-consuming steps by freely diffusible intermediates and for an allosteric mechanism of respiratory control at coupling site 2.
    Stoner CD
    J Bioenerg Biomembr; 1985 Apr; 17(2):85-108. PubMed ID: 2860103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady-state kinetics of the overall oxidative phosphorylation reaction in heart mitochondria. Determination of the coupling relationships between the respiratory reactions and miscellaneous observations concerning rate-limiting steps.
    Stoner CD
    J Bioenerg Biomembr; 1984 Apr; 16(2):115-41. PubMed ID: 6100296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of acetylcolletotrichin on the mitochondrial respiratory chain.
    Foucher B; Chappell JB; McGivan JD
    Biochem J; 1974 Mar; 138(3):415-23. PubMed ID: 4372992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of methyl methacrylate on mitochondrial function and structure.
    Bereznowski Z
    Int J Biochem; 1994 Sep; 26(9):1119-27. PubMed ID: 7988736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of mitochondrial oxidative phosphorylation on activity of the adenine nucleotide translocase.
    Forman NG; Wilson DF
    J Biol Chem; 1983 Jul; 258(14):8649-55. PubMed ID: 6305996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The effect of benz(alpha)pyrene and its derivatives on the function of isolated rat liver mitochondria].
    Riabykh TP; Kobliakov VA
    Vopr Med Khim; 1974; 20(4):393-6. PubMed ID: 4462293
    [No Abstract]   [Full Text] [Related]  

  • 17. Altered energy coupling in rat heart mitochondria following in vivo treatment with propranolol.
    Katyare SS; Rajan RR
    Biochem Pharmacol; 1991 Jul; 42(3):617-23. PubMed ID: 1677572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site of action of lipid A on mitochondria.
    Kato M
    J Bacteriol; 1972 Oct; 112(1):268-75. PubMed ID: 4263402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the location of the H+-extruding steps in site 2 of the mitochondrial electron transport chain.
    Alexandre A; Galiazzo F; Lehninger AL
    J Biol Chem; 1980 Nov; 255(22):10721-30. PubMed ID: 7430148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of endurance training and creatine depletion on regional mitochondrial adaptations in rat skeletal muscle.
    Roussel D; Lhenry F; Ecochard L; Sempore B; Rouanet JL; Favier R
    Biochem J; 2000 Sep; 350 Pt 2(Pt 2):547-53. PubMed ID: 10947970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.