These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36110897)

  • 1. Inferring structural and dynamical properties of gene networks from data with deep learning.
    Chen F; Li C
    NAR Genom Bioinform; 2022 Sep; 4(3):lqac068. PubMed ID: 36110897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SAILoR: Structure-Aware Inference of Logic Rules.
    Pušnik Ž; Mraz M; Zimic N; Moškon M
    PLoS One; 2024; 19(6):e0304102. PubMed ID: 38861487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATEN: And/Or tree ensemble for inferring accurate Boolean network topology and dynamics.
    Shi N; Zhu Z; Tang K; Parker D; He S
    Bioinformatics; 2020 Jan; 36(2):578-585. PubMed ID: 31368481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring gene regulatory networks from single-cell gene expression data via deep multi-view contrastive learning.
    Lin Z; Ou-Yang L
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36585783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepGRNCS: deep learning-based framework for jointly inferring gene regulatory networks across cell subpopulations.
    Lei Y; Huang XT; Guo X; Hang Katie Chan K; Gao L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38980373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An algebra-based method for inferring gene regulatory networks.
    Vera-Licona P; Jarrah A; Garcia-Puente LD; McGee J; Laubenbacher R
    BMC Syst Biol; 2014 Mar; 8():37. PubMed ID: 24669835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification-Based Inference of Dynamical Models of Gene Regulatory Networks.
    Fehr DA; Handzlik JE; Manu ; Loh YL
    G3 (Bethesda); 2019 Dec; 9(12):4183-4195. PubMed ID: 31624138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. D3GRN: a data driven dynamic network construction method to infer gene regulatory networks.
    Chen X; Li M; Zheng R; Wu FX; Wang J
    BMC Genomics; 2019 Dec; 20(Suppl 13):929. PubMed ID: 31881937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the Effectiveness of Causality Inference Methods for Gene Regulatory Networks.
    Ahmed SS; Roy S; Kalita J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):56-70. PubMed ID: 29994618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data-Driven Boolean Network Inference Using a Genetic Algorithm With Marker-Based Encoding.
    Liu X; Shi N; Wang Y; Ji Z; He S
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1558-1569. PubMed ID: 33513105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-learning-based hologram generation using a generative model.
    Kang JW; Park BS; Kim JK; Kim DW; Seo YH
    Appl Opt; 2021 Aug; 60(24):7391-7399. PubMed ID: 34613028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-cell transcriptional analysis to uncover regulatory circuits driving cell fate decisions in early mouse development.
    Chen H; Guo J; Mishra SK; Robson P; Niranjan M; Zheng J
    Bioinformatics; 2015 Apr; 31(7):1060-6. PubMed ID: 25416748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A gene regulatory network inference model based on pseudo-siamese network.
    Wang Q; Guo M; Chen J; Duan R
    BMC Bioinformatics; 2023 Apr; 24(1):163. PubMed ID: 37085776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neuro-evolution approach to infer a Boolean network from time-series gene expressions.
    Barman S; Kwon YK
    Bioinformatics; 2020 Dec; 36(Suppl_2):i762-i769. PubMed ID: 33381823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How to infer gene networks from expression profiles, revisited.
    Penfold CA; Wild DL
    Interface Focus; 2011 Dec; 1(6):857-70. PubMed ID: 23226586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prophetic Granger Causality to infer gene regulatory networks.
    Carlin DE; Paull EO; Graim K; Wong CK; Bivol A; Ryabinin P; Ellrott K; Sokolov A; Stuart JM
    PLoS One; 2017; 12(12):e0170340. PubMed ID: 29211761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LogicGep: Boolean networks inference using symbolic regression from time-series transcriptomic profiling data.
    Zhang D; Gao S; Liu ZP; Gao R
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38886006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid deep learning framework for gene regulatory network inference from single-cell transcriptomic data.
    Zhao M; He W; Tang J; Zou Q; Guo F
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35062026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.