BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 3611095)

  • 1. Diffusion coefficients of quenchers in proteins from transient effects in the intensity decays.
    Lakowicz JR; Joshi NB; Johnson ML; Szmacinski H; Gryczynski I
    J Biol Chem; 1987 Aug; 262(23):10907-10. PubMed ID: 3611095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distance-dependent fluorescence quenching of tryptophan by acrylamide.
    Lakowicz JR; Zelent B; Gryczynski I; Kuśba J; Johnson ML
    Photochem Photobiol; 1994 Sep; 60(3):205-14. PubMed ID: 7972370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient Effects in Fluorescence Quenching Measured by 2-GHz Frequency-Domain Fluorometry.
    Lakowicz JR; Johnson ML; Gryczynski I; Joshi N; Laczko G
    J Phys Chem; 1987 Jun; 91(12):3277-3285. PubMed ID: 31908358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved and steady-state fluorescence quenching of N-acetyl-L-tryptophanamide by acrylamide and iodide.
    Zelent B; Kuśba J; Gryczynski I; Johnson ML; Lakowicz JR
    Biophys Chem; 1998 Jul; 73(1-2):53-75. PubMed ID: 9697300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropy decays of single tryptophan proteins measured by GHz frequency-domain fluorometry with collisional quenching.
    Lakowicz JR; Gryczynski I; Szmacinski H; Cherek H; Joshi N
    Eur Biophys J; 1991; 19(3):125-40. PubMed ID: 1647947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distance-dependent fluorescence quenching ofN-acetyl-L-tryptophanamide by acrylamide.
    Zelent B; Kuśba J; Gryczynski I; Johnson ML; Lakowicz JR
    J Fluoresc; 1993 Sep; 3(3):199-207. PubMed ID: 24234834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acrylamide and oxygen fluorescence quenching studies with liver alcohol dehydrogenase using steady-state and phase fluorometry.
    Eftink MR; Jameson DM
    Biochemistry; 1982 Aug; 21(18):4443-9. PubMed ID: 6751389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acrylamide quenching of Yt-base fluorescence in aqueous solution.
    Gryczynski I; Johnson ML; Lakowicz JR
    Biophys Chem; 1988 Sep; 31(3):269-74. PubMed ID: 3233300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and dynamics of staphylococcal nuclease mutants as studied by fluorescence quenching techniques.
    Wright G; Freedman RB
    Protein Eng; 1989 Aug; 2(8):583-8. PubMed ID: 2682607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fluorescence study of Tn10-encoded tet repressor.
    Wasylewski Z; Kaszycki P; Drwiega M
    J Protein Chem; 1996 Jan; 15(1):45-58. PubMed ID: 8838589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational differences of oxytocin and vasopressin as observed by fluorescence anisotropy decays and transient effects in collisional quenching of tyrosine fluorescence.
    Gryczynski I; Szmacinski H; Laczko G; Wiczk W; Johnson ML; Kusba J; Lakowicz JR
    J Fluoresc; 1991 Sep; 1(3):163-76. PubMed ID: 24242994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of temperature on the fluorescence intensity and anisotropy decays of staphylococcal nuclease and the less stable nuclease-conA-SG28 mutant.
    Eftink MR; Gryczynski I; Wiczk W; Laczko G; Lakowicz JR
    Biochemistry; 1991 Sep; 30(37):8945-53. PubMed ID: 1892812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence quenching of the buried tryptophan residue of cod parvalbumin.
    Eftink MR; Hagaman KA
    Biophys Chem; 1985 Aug; 22(3):173-80. PubMed ID: 4052574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence quenching studies of bovine growth hormone in several conformational states.
    Havel HA; Kauffman EW; Elzinga PA
    Biochim Biophys Acta; 1988 Jul; 955(2):154-63. PubMed ID: 3395621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acrylamide and iodide fluorescence quenching as a structural probe of tryptophan microenvironment in bovine lens crystallins.
    Phillips SR; Wilson LJ; Borkman RF
    Curr Eye Res; 1986 Aug; 5(8):611-9. PubMed ID: 3757547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of glucose and magnesium ion on the quenching of yeast hexokinase fluorescence by acrylamide.
    Feldman I; Norton GE
    Biochim Biophys Acta; 1980 Sep; 615(1):132-42. PubMed ID: 7000190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intensity and anisotropy decays of [Leu5] enkephalin tyrosyl fluorescence by 10 GHz frequency-domain fluorometry.
    Lakowicz JR; Gryczynski I; Laczko G; Wiczk W
    Biophys Chem; 1993 Jul; 47(1):33-40. PubMed ID: 8364147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the tryptophan environments of interleukins 1 alpha and 1 beta by fluorescence quenching and lifetime measurements.
    Epps DE; Yem AW; Deibel MR
    Arch Biochem Biophys; 1989 Nov; 275(1):82-91. PubMed ID: 2817905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acrylamide quenching of tryptophan photochemistry and photophysics.
    Tallmadge DH; Huebner JS; Borkman RF
    Photochem Photobiol; 1989 Apr; 49(4):381-6. PubMed ID: 2727078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of tryptophan residues of cytochrome P450scc with a highly specific fluorescence quencher, a substrate analogue, compared to acrylamide and iodide.
    Lange R; Anzenbacher P; Müller S; Maurin L; Balny C
    Eur J Biochem; 1994 Dec; 226(3):963-70. PubMed ID: 7813487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.