BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 3611095)

  • 21. Fluorescence quenching of dimeric and monomeric forms of yeast hexokinase (PII): effect of substrate binding steady-state and time-resolved fluorescence studies.
    Maity H; Jarori GK
    Physiol Chem Phys Med NMR; 2002; 34(1):43-60. PubMed ID: 12403274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Viscosity dependence of the solute quenching of the tryptophanyl fluorescence of proteins.
    Eftink MR; Hagaman KA
    Biophys Chem; 1986 Dec; 25(3):277-82. PubMed ID: 3103704
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of anisotropy decays in terms of correlation time distributions, measured by frequency-domain fluorometry.
    Gryczynski I; Johnson ML; Lakowicz JR
    Biophys Chem; 1994 Sep; 52(1):1-13. PubMed ID: 7948708
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced resolution of fluorescence anisotropy decays by simultaneous analysis of progressively quenched samples. Applications to anisotropic rotations and to protein dynamics.
    Lakowicz JR; Cherek H; Gryczynski I; Joshi N; Johnson ML
    Biophys J; 1987 May; 51(5):755-68. PubMed ID: 3593873
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quenching of tryptophanyl fluorescence of bovine adrenal P-450C-21 and inhibition of substrate binding by acrylamide.
    Narasimhulu S
    Biochemistry; 1988 Feb; 27(4):1147-53. PubMed ID: 3259146
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Frequency domain measurements of the fluorescence lifetime of ribonuclease T1.
    Eftink MR; Ghiron CA
    Biophys J; 1987 Sep; 52(3):467-73. PubMed ID: 3115328
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A photoreversible conformational change in 124 kDa Avena phytochrome.
    Singh BR; Chai YG; Song PS; Lee J; Robinson GW
    Biochim Biophys Acta; 1988 Dec; 936(3):395-405. PubMed ID: 3196711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescence quenching of human orosomucoid. Accessibility to drugs and small quenching agents.
    Friedman ML; Schlueter KT; Kirley TL; Halsall HB
    Biochem J; 1985 Dec; 232(3):863-7. PubMed ID: 4091825
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pressure dependence of fluorescence quenching reactions in proteins.
    Eftink MR; Wasylewski Z
    Biophys Chem; 1988 Oct; 32(1):121-30. PubMed ID: 3233308
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosynthetic incorporation of tryptophan analogues into staphylococcal nuclease: effect of 5-hydroxytryptophan and 7-azatryptophan on structure and stability.
    Wong CY; Eftink MR
    Protein Sci; 1997 Mar; 6(3):689-97. PubMed ID: 9070451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measurement of subnanosecond anisotropy decays of protein fluorescence using frequency-domain fluorometry.
    Lakowicz JR; Laczko G; Gryczynski I; Cherek H
    J Biol Chem; 1986 Feb; 261(5):2240-5. PubMed ID: 3944133
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acrylamide quenching of the fluorescence of glyceraldehyde-3-phosphate dehydrogenase: reversible and irreversible effects.
    Bastyns K; Engelborghs Y
    Photochem Photobiol; 1992 Jan; 55(1):9-16. PubMed ID: 1603853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The polar headgroup of the detergent governs the accessibility to water of tryptophan octyl ester in host micelles.
    Tortech L; Jaxel C; Vincent M; Gallay J; de Foresta B
    Biochim Biophys Acta; 2001 Sep; 1514(1):76-86. PubMed ID: 11513806
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photophysical Behavior and Fluorescence Quenching of l-Tryptophan in Choline Chloride-Based Deep Eutectic Solvents.
    Kadyan A; Juneja S; Pandey S
    J Phys Chem B; 2019 Sep; 123(35):7578-7587. PubMed ID: 31402653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of single mutations on the structural dynamics of a DNA repair enzyme, the Escherichia coli formamidopyrimidine-DNA glycosylase--a fluorescence study using tryptophan residues as reporter groups.
    Kuznetsov SV; Sidorkina OM; Jurado J; Bazin M; Tauc P; Brochon JC; Laval J; Santus R
    Eur J Biochem; 1998 Apr; 253(2):413-20. PubMed ID: 9654091
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorescence lifetime and solute quenching studies with the single tryptophan containing protein parvalbumin from codfish.
    Eftink MR; Wasylewski Z
    Biochemistry; 1989 Jan; 28(1):382-91. PubMed ID: 2706263
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Viscosity dependence of acrylamide quenching of ribonuclease T1 fluorescence. The gating mechanism.
    Somogyi B; Norman JA; Punyiczki M; Rosenberg A
    Biochim Biophys Acta; 1992 Feb; 1119(1):81-9. PubMed ID: 1540639
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quenching of tryptophan fluorescence in bovine lens proteins by acrylamide and iodide.
    Augusteyn RC; Putilina T; Seifert R
    Curr Eye Res; 1988 Mar; 7(3):237-45. PubMed ID: 3359809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescence characterization of Trp 21 in rat glutathione S-transferase 1-1: microconformational changes induced by S-hexyl glutathione.
    Wang RW; Bird AW; Newton DJ; Lu AY; Atkins WM
    Protein Sci; 1993 Dec; 2(12):2085-94. PubMed ID: 8298458
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accessibilities of the sulfhydryl groups of native and photooxidized lens crystallins: a fluorescence lifetime and quenching study.
    Andley UP; Clark BA
    Biochemistry; 1988 Jan; 27(2):810-20. PubMed ID: 3349065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.