These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
380 related articles for article (PubMed ID: 36110973)
1. A silk fibroin/chitosan/nanohydroxyapatite biomimetic bone scaffold combined with autologous concentrated growth factor promotes the proliferation and osteogenic differentiation of BMSCs and repair of critical bone defects. Zhou Y; Liu X; She H; Wang R; Bai F; Xiang B Regen Ther; 2022 Dec; 21():307-321. PubMed ID: 36110973 [TBL] [Abstract][Full Text] [Related]
2. Polydopamine-coated biomimetic bone scaffolds loaded with exosomes promote osteogenic differentiation of BMSC and bone regeneration. Zhou Y; Deng G; She H; Bai F; Xiang B; Zhou J; Zhang S Regen Ther; 2023 Jun; 23():25-36. PubMed ID: 37063095 [TBL] [Abstract][Full Text] [Related]
3. Composite scaffolds loaded with bone mesenchymal stem cells promote the repair of radial bone defects in rabbit model. Ruan SQ; Deng J; Yan L; Huang WL Biomed Pharmacother; 2018 Jan; 97():600-606. PubMed ID: 29101803 [TBL] [Abstract][Full Text] [Related]
4. 3D-printed nanohydroxyapatite/methylacrylylated silk fibroin scaffold for repairing rat skull defects. Huiwen W; Shuai L; Jia X; Shihao D; Kun W; Runhuai Y; Haisheng Q; Jun L J Biol Eng; 2024 Mar; 18(1):22. PubMed ID: 38515148 [TBL] [Abstract][Full Text] [Related]
5. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat. Yu X; Shen G; Shang Q; Zhang Z; Zhao W; Zhang P; Liang D; Ren H; Jiang X Int J Biol Macromol; 2021 Dec; 193(Pt A):510-518. PubMed ID: 34710477 [TBL] [Abstract][Full Text] [Related]
6. NGF-BMSC-SF/CS composites for repairing knee joint osteochondral defects in rabbits: evaluation of the repair effect and potential underlying mechanisms. Zhang Y; Huang W; Xiao H; Ruan S; Deng J J Orthop Surg Res; 2024 Jul; 19(1):443. PubMed ID: 39075502 [TBL] [Abstract][Full Text] [Related]
7. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits. Ruan SQ; Yan L; Deng J; Huang WL; Jiang DM Int Orthop; 2017 Sep; 41(9):1899-1908. PubMed ID: 28616703 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering. Tong S; Xu DP; Liu ZM; Du Y; Wang XK Int J Mol Med; 2016 Aug; 38(2):367-80. PubMed ID: 27352815 [TBL] [Abstract][Full Text] [Related]
9. Integration of C-type natriuretic peptide gene-modified bone marrow mesenchymal stem cells with chitosan/silk fibroin scaffolds as a promising strategy for articular cartilage regeneration. Yang S; Qian Z; Liu D; Wen N; Xu J; Guo X Cell Tissue Bank; 2019 Jun; 20(2):209-220. PubMed ID: 30854603 [TBL] [Abstract][Full Text] [Related]
10. [Effect of concentrated growth factor combined with mineralized collagen material on the adhesion, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells and the osteogenic effect Zhang Y; Liu K; Yan M; Wang W Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2021 Mar; 35(3):295-302. PubMed ID: 33719236 [TBL] [Abstract][Full Text] [Related]
11. A silk fibroin/chitosan scaffold in combination with bone marrow-derived mesenchymal stem cells to repair cartilage defects in the rabbit knee. Deng J; She R; Huang W; Dong Z; Mo G; Liu B J Mater Sci Mater Med; 2013 Aug; 24(8):2037-46. PubMed ID: 23677433 [TBL] [Abstract][Full Text] [Related]
12. [Study on the gelatin methacryloyl composite scaffold with exogenous transforming growth factor β Liu X; Wang Z; Xu C; Guan J; Wei B; Liu Y Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2021 Jul; 35(7):904-912. PubMed ID: 34308601 [TBL] [Abstract][Full Text] [Related]
13. Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds. Lai GJ; Shalumon KT; Chen JP Int J Nanomedicine; 2015; 10():567-84. PubMed ID: 25609962 [TBL] [Abstract][Full Text] [Related]
14. Silk fibroin/collagen and silk fibroin/chitosan blended three-dimensional scaffolds for tissue engineering. Sun K; Li H; Li R; Nian Z; Li D; Xu C Eur J Orthop Surg Traumatol; 2015 Feb; 25(2):243-9. PubMed ID: 25118870 [TBL] [Abstract][Full Text] [Related]
15. Nano-hydroxy apatite/chitosan/gelatin scaffolds enriched by a combination of platelet-rich plasma and fibrin glue enhance proliferation and differentiation of seeded human dental pulp stem cells. Sadeghinia A; Davaran S; Salehi R; Jamalpoor Z Biomed Pharmacother; 2019 Jan; 109():1924-1931. PubMed ID: 30551447 [TBL] [Abstract][Full Text] [Related]
16. Application of silk fibroin/chitosan/nano-hydroxyapatite composite scaffold in the repair of rabbit radial bone defect. Ye P; Yu B; Deng J; She RF; Huang WL Exp Ther Med; 2017 Dec; 14(6):5547-5553. PubMed ID: 29285090 [TBL] [Abstract][Full Text] [Related]
17. Osteoblast-derived extracellular matrix coated PLLA/silk fibroin composite nanofibers promote osteogenic differentiation of bone mesenchymal stem cells. Wu Y; Zhou L; Li Y; Lou X J Biomed Mater Res A; 2022 Mar; 110(3):525-534. PubMed ID: 34494712 [TBL] [Abstract][Full Text] [Related]
18. Graphene oxide-modified silk fibroin/nanohydroxyapatite scaffold loaded with urine-derived stem cells for immunomodulation and bone regeneration. Sun J; Li L; Xing F; Yang Y; Gong M; Liu G; Wu S; Luo R; Duan X; Liu M; Zou M; Xiang Z Stem Cell Res Ther; 2021 Dec; 12(1):591. PubMed ID: 34863288 [TBL] [Abstract][Full Text] [Related]
19. A Biological Study of Composites Based on the Blends of Nanohydroxyapatite, Silk Fibroin and Chitosan. Tuwalska A; Sionkowska A; Bryła A; Tylko G; Osyczka AM; Laus M; Vojtová L Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955380 [TBL] [Abstract][Full Text] [Related]
20. Enhanced bone regeneration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide. Wu J; Zheng A; Liu Y; Jiao D; Zeng D; Wang X; Cao L; Jiang X Int J Nanomedicine; 2019; 14():733-751. PubMed ID: 30705589 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]