BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 36111239)

  • 1. Carbohydrate-binding protein from stinging nettle as fusion inhibitor for SARS-CoV-2 variants of concern.
    Vanhulle E; D'huys T; Provinciael B; Stroobants J; Camps A; Noppen S; Schols D; Van Damme EJM; Maes P; Stevaert A; Vermeire K
    Front Cell Infect Microbiol; 2022; 12():989534. PubMed ID: 36111239
    [No Abstract]   [Full Text] [Related]  

  • 2. Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by stinging nettle lectin, Urtica dioica agglutinin.
    Kumaki Y; Wandersee MK; Smith AJ; Zhou Y; Simmons G; Nelson NM; Bailey KW; Vest ZG; Li JK; Chan PK; Smee DF; Barnard DL
    Antiviral Res; 2011 Apr; 90(1):22-32. PubMed ID: 21338626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular electrical impedance to profile SARS-CoV-2 fusion inhibitors and to assess the fusogenic potential of spike mutants.
    Vanhulle E; Doijen J; Stroobants J; Provinciael B; Noppen S; Schols D; Stevaert A; Vermeire K
    Antiviral Res; 2023 May; 213():105587. PubMed ID: 36977434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Urtica dioica agglutinin (UDA) as a potential candidate for inhibition of SARS-CoV-2 Omicron variants: In silico prediction and experimental validation.
    Sabzian-Molaei F; Hosseini S; Alipour A; Ghaderi H; Fotouhi-Chahouki F; Hadi A; Shahsavarani H
    Phytomedicine; 2023 Mar; 111():154648. PubMed ID: 36681052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Urtica dioica Agglutinin: A plant protein candidate for inhibition of SARS-COV-2 receptor-binding domain for control of Covid19 Infection.
    Sabzian-Molaei F; Nasiri Khalili MA; Sabzian-Molaei M; Shahsavarani H; Fattah Pour A; Molaei Rad A; Hadi A
    PLoS One; 2022; 17(7):e0268156. PubMed ID: 35901082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the Role of N-Linked Glycosylation in Cell Surface Expression, Function, and Binding Properties of SARS-CoV-2 Receptor ACE2.
    Rowland R; Brandariz-Nuñez A
    Microbiol Spectr; 2021 Oct; 9(2):e0119921. PubMed ID: 34494876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinctive Roles of Furin and TMPRSS2 in SARS-CoV-2 Infectivity.
    Essalmani R; Jain J; Susan-Resiga D; Andréo U; Evagelidis A; Derbali RM; Huynh DN; Dallaire F; Laporte M; Delpal A; Sutto-Ortiz P; Coutard B; Mapa C; Wilcoxen K; Decroly E; Nq Pham T; Cohen ÉA; Seidah NG
    J Virol; 2022 Apr; 96(8):e0012822. PubMed ID: 35343766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PRO-2000 exhibits SARS-CoV-2 antiviral activity by interfering with spike-heparin binding.
    Vanderlinden E; Boonen A; Noppen S; Schoofs G; Imbrechts M; Geukens N; Snoeck R; Stevaert A; Naesens L; Andrei G; Schols D
    Antiviral Res; 2023 Sep; 217():105700. PubMed ID: 37562608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Newly Engineered A549 Cell Line Expressing ACE2 and TMPRSS2 Is Highly Permissive to SARS-CoV-2, Including the Delta and Omicron Variants.
    Chang CW; Parsi KM; Somasundaran M; Vanderleeden E; Liu P; Cruz J; Cousineau A; Finberg RW; Kurt-Jones EA
    Viruses; 2022 Jun; 14(7):. PubMed ID: 35891350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lancemaside A from Codonopsis lanceolata: Studies on Antiviral Activity and Mechanism of Action against SARS-CoV-2 and Its Variants of Concern.
    Kim TY; Jeon S; Ko M; Du YE; Son SR; Jang DS; Kim S; Lee CJ
    Antimicrob Agents Chemother; 2022 Dec; 66(12):e0120122. PubMed ID: 36374087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Integral Membrane Protein ZMPSTE24 Protects Cells from SARS-CoV-2 Spike-Mediated Pseudovirus Infection and Syncytia Formation.
    Shilagardi K; Spear ED; Abraham R; Griffin DE; Michaelis S
    mBio; 2022 Oct; 13(5):e0254322. PubMed ID: 36197088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ganoderma microsporum immunomodulatory protein acts as a multifunctional broad-spectrum antiviral against SARS-CoV-2 by interfering virus binding to the host cells and spike-mediated cell fusion.
    Ho HPT; Vo DNK; Lin TY; Hung JN; Chiu YH; Tsai MH
    Biomed Pharmacother; 2022 Nov; 155():113766. PubMed ID: 36271550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abiotic Synthetic Antibody Inhibitor with Broad-Spectrum Neutralization and Antiviral Efficacy against Escaping SARS-CoV-2 Variants.
    Li B; Zhao Y; Wu X; Wu H; Tang W; Yu X; Mou J; Tan W; Jin M; Li W; Zhang Q; Liu M
    ACS Nano; 2023 Apr; 17(7):7017-7034. PubMed ID: 36971310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of SARS-CoV-2 entry inhibitors based on ACE2 receptor or engineered Spike-binding peptides.
    Llewellyn GN; Chen HY; Rogers GL; Huang X; Sell PJ; Henley JE; Cannon PM
    J Virol; 2023 Aug; 97(8):e0068423. PubMed ID: 37555663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Snake venom phospholipase A
    Siniavin AE; Streltsova MA; Nikiforova MA; Kudryavtsev DS; Grinkina SD; Gushchin VA; Mozhaeva VA; Starkov VG; Osipov AV; Lummis SCR; Tsetlin VI; Utkin YN
    Cell Mol Life Sci; 2021 Dec; 78(23):7777-7794. PubMed ID: 34714362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SARS-CoV-2 Permissive glioblastoma cell line for high throughput antiviral screening.
    Vanhulle E; Stroobants J; Provinciael B; Camps A; Noppen S; Maes P; Vermeire K
    Antiviral Res; 2022 Jul; 203():105342. PubMed ID: 35595082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of SARS-CoV-2 Spike Proteins in Cell Entry: Control Elements in the Amino-Terminal Domains.
    Qing E; Kicmal T; Kumar B; Hawkins GM; Timm E; Perlman S; Gallagher T
    mBio; 2021 Aug; 12(4):e0159021. PubMed ID: 34340537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of Potent Membrane Fusion Inhibitors against SARS-CoV-2, an Emerging Coronavirus with High Fusogenic Activity.
    Zhu Y; Yu D; Yan H; Chong H; He Y
    J Virol; 2020 Jul; 94(14):. PubMed ID: 32376627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein.
    Johnson MC; Lyddon TD; Suarez R; Salcedo B; LePique M; Graham M; Ricana C; Robinson C; Ritter DG
    J Virol; 2020 Oct; 94(21):. PubMed ID: 32788194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research Progress on Spike-Dependent SARS-CoV-2 Fusion Inhibitors and Small Molecules Targeting the S2 Subunit of Spike.
    Freidel MR; Armen RS
    Viruses; 2024 Apr; 16(5):. PubMed ID: 38793593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.