BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 36111641)

  • 1. Influence of microchannel geometry on device performance and electrophysiological recording fidelity during long-term studies of connected neural populations.
    Goshi N; Girardi G; da Costa Souza F; Gardner A; Lein PJ; Seker E
    Lab Chip; 2022 Oct; 22(20):3961-3975. PubMed ID: 36111641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microchannel device tailored to laser axotomy and long-term microelectrode array electrophysiology of functional regeneration.
    Habibey R; Golabchi A; Latifi S; Difato F; Blau A
    Lab Chip; 2015 Dec; 15(24):4578-90. PubMed ID: 26507288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic compartmentalized co-culture platform for CNS axon myelination research.
    Park J; Koito H; Li J; Han A
    Biomed Microdevices; 2009 Dec; 11(6):1145-53. PubMed ID: 19554452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circular compartmentalized microfluidic platform: Study of axon-glia interactions.
    Hosmane S; Yang IH; Ruffin A; Thakor N; Venkatesan A
    Lab Chip; 2010 Mar; 10(6):741-7. PubMed ID: 20221562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Axonal Spikes in Cultured Neuronal Networks Using Microelectrode Arrays and Microchannel Devices.
    Hong N; Joo S; Nam Y
    IEEE Trans Biomed Eng; 2017 Feb; 64(2):492-498. PubMed ID: 27187941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-compartment CNS neuron-glia Co-culture microfluidic platform.
    Park J; Koito H; Li J; Han A
    J Vis Exp; 2009 Sep; (31):. PubMed ID: 19745806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacing Microfluidics with Microelectrode Arrays for Studying Neuronal Communication and Axonal Signal Propagation.
    Lopes CDF; Mateus JC; Aguiar P
    J Vis Exp; 2018 Dec; (142):. PubMed ID: 30582587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Method for Recording the Bioelectrical Activity of Neural Axons upon Stimulation with Short Pulses of Infrared Laser Radiation.
    Pigareva YI; Antipova OO; Kolpakov VN; Martynova OV; Popova AA; Mukhina IV; Pimashkin AS; Es'kin VA
    Sovrem Tekhnologii Med; 2021; 12(6):21-27. PubMed ID: 34796015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recording large extracellular spikes in microchannels along many axonal sites from individual neurons.
    Lewandowska MK; Bakkum DJ; Rompani SB; Hierlemann A
    PLoS One; 2015; 10(3):e0118514. PubMed ID: 25734567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low density culture of mammalian primary neurons in compartmentalized microfluidic devices.
    Poddar S; Parasa MK; Vajanthri KY; Chaudhary A; Pancholi UV; Sarkar A; Singh AK; Mahto SK
    Biomed Microdevices; 2019 Jul; 21(3):67. PubMed ID: 31273556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microphysiological system for parallelized morphological and electrophysiological read-out of 3D neuronal cell culture.
    Jones PD; Molina-Martínez B; Niedworok A; Cesare P
    Lab Chip; 2024 Mar; 24(6):1750-1761. PubMed ID: 38348692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-compartment neuron-glia co-culture platform for localized CNS axon-glia interaction study.
    Park J; Koito H; Li J; Han A
    Lab Chip; 2012 Sep; 12(18):3296-304. PubMed ID: 22828584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiological Activity of Primary Cortical Neuron-Glia Mixed Cultures.
    Goshi N; Kim H; Girardi G; Gardner A; Seker E
    Cells; 2023 Mar; 12(5):. PubMed ID: 36899957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of in vitro neural functional connectivity on a neurofluidic device.
    Shen X; Wu J; Wang Z; Chen T
    Electrophoresis; 2019 Nov; 40(22):2996-3004. PubMed ID: 31556965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic and compartmentalized platforms for neurobiological research.
    Taylor AM; Jeon NL
    Crit Rev Biomed Eng; 2011; 39(3):185-200. PubMed ID: 21967302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal relation between neural activity and neurite pruning on a numerical model and a microchannel device with micro electrode array.
    Kondo Y; Yada Y; Haga T; Takayama Y; Isomura T; Jimbo Y; Fukayama O; Hoshino T; Mabuchi K
    Biochem Biophys Res Commun; 2017 Apr; 486(2):539-544. PubMed ID: 28322793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB.
    Charkhkar H; Knaack GL; McHail DG; Mandal HS; Peixoto N; Rubinson JF; Dumas TC; Pancrazio JJ
    Acta Biomater; 2016 Mar; 32():57-67. PubMed ID: 26689462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of silicon-based neural probes and micro-drive arrays for chronic recording of large populations of neurons in behaving animals.
    Michon F; Aarts A; Holzhammer T; Ruther P; Borghs G; McNaughton B; Kloosterman F
    J Neural Eng; 2016 Aug; 13(4):046018. PubMed ID: 27351591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation.
    Kim R; Nam Y
    J Neurosci Methods; 2019 Oct; 326():108369. PubMed ID: 31326604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysics of microchannel-enabled neuron-electrode interfaces.
    Wang L; Riss M; Buitrago JO; Claverol-Tinturé E
    J Neural Eng; 2012 Apr; 9(2):026010. PubMed ID: 22333069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.