These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36111667)

  • 1. Mass-determining role in the electrophoretic separation of colloidal plasmonic nanoparticle oligomers.
    Cao A; Tan J; Liu D; Chen Z; Dou L; Liu Z; Li Y
    Nanoscale; 2022 Oct; 14(38):14161-14168. PubMed ID: 36111667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition from isolated to collective modes in plasmonic oligomers.
    Hentschel M; Saliba M; Vogelgesang R; Giessen H; Alivisatos AP; Liu N
    Nano Lett; 2010 Jul; 10(7):2721-6. PubMed ID: 20586409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macroscopic Strain-Induced Transition from Quasi-infinite Gold Nanoparticle Chains to Defined Plasmonic Oligomers.
    Steiner AM; Mayer M; Seuss M; Nikolov S; Harris KD; Alexeev A; Kuttner C; König TAF; Fery A
    ACS Nano; 2017 Sep; 11(9):8871-8880. PubMed ID: 28719741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hetero-oligomer nanoparticle arrays for plasmon-enhanced hydrogen sensing.
    Yang A; Huntington MD; Cardinal MF; Masango SS; Van Duyne RP; Odom TW
    ACS Nano; 2014 Aug; 8(8):7639-47. PubMed ID: 24956125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-Plasmonic Gold@Copper Sulfide Core-Shell Nanoparticles: Phase-Selective Synthesis and Multimodal Photothermal and Photocatalytic Behaviors.
    Sun M; Fu X; Chen K; Wang H
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46146-46161. PubMed ID: 32955860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of nanoparticles by capillary electromigration separation techniques.
    Pyell U
    Electrophoresis; 2010 Mar; 31(5):814-31. PubMed ID: 20191544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bottom-up assembly of colloidal gold and silver nanostructures for designable plasmonic structures and metamaterials.
    Gwo S; Lin MH; He CL; Chen HY; Teranishi T
    Langmuir; 2012 Jun; 28(24):8902-8. PubMed ID: 22372768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers.
    König M; Rahmani M; Zhang L; Lei DY; Roschuk TR; Giannini V; Qiu CW; Hong M; Schlücker S; Maier SA
    ACS Nano; 2014 Sep; 8(9):9188-98. PubMed ID: 25136980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Flash" preparation of strongly coupled metal nanoparticle clusters with sub-nm gaps by Ag
    Liu M; Fang L; Li Y; Gong M; Xu A; Deng Z
    Chem Sci; 2016 Aug; 7(8):5435-5440. PubMed ID: 30034682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser-Scanning-Guided Assembly of Quasi-3D Patterned Arrays of Plasmonic Dimers for Information Encryption.
    Yang F; Ye S; Dong W; Zheng D; Xia Y; Yi C; Tao J; Sun C; Zhang L; Wang L; Chen Q; Wang Y; Nie Z
    Adv Mater; 2021 Jun; 33(24):e2100325. PubMed ID: 33969563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Superlattice Membranes Based on Bimetallic Nano-Sea Urchins as High-Performance Label-Free Surface-Enhanced Raman Spectroscopy Platforms.
    Zhang H; Wang R; Sikdar D; Wu L; Sun J; Gu N; Chen Y
    ACS Sens; 2022 Feb; 7(2):622-631. PubMed ID: 35157439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic oligomers: the role of individual particles in collective behavior.
    Hentschel M; Dregely D; Vogelgesang R; Giessen H; Liu N
    ACS Nano; 2011 Mar; 5(3):2042-50. PubMed ID: 21344858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Application of non-stationary phase separation hyphenated with inductively coupled plasma mass spectrometry in the analysis of trace metal-containing nanoparticles in the environment].
    Jiang H; Li J; Tan Z; Guo Y; Liu Y; Hu L; Yin Y; Cai Y; Jiang G
    Se Pu; 2021 Aug; 39(8):855-869. PubMed ID: 34212586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons.
    Hentschel M; Wu L; Schäferling M; Bai P; Li EP; Giessen H
    ACS Nano; 2012 Nov; 6(11):10355-65. PubMed ID: 23078518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic nanoparticle simulations and inverse design using machine learning.
    He J; He C; Zheng C; Wang Q; Ye J
    Nanoscale; 2019 Sep; 11(37):17444-17459. PubMed ID: 31531431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic mode engineering with templated self-assembled nanoclusters.
    Fan JA; Bao K; Sun L; Bao J; Manoharan VN; Nordlander P; Capasso F
    Nano Lett; 2012 Oct; 12(10):5318-24. PubMed ID: 22947109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis.
    Lin L; Peng X; Wang M; Scarabelli L; Mao Z; Liz-Marzán LM; Becker MF; Zheng Y
    ACS Nano; 2016 Oct; 10(10):9659-9668. PubMed ID: 27640212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantum mechanical study of optical excitations in nanodisk plasmonic oligomers.
    Mokkath JH
    Phys Chem Chem Phys; 2019 Dec; 21(48):26540-26548. PubMed ID: 31778133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled assembly of plasmonic colloidal nanoparticle clusters.
    Romo-Herrera JM; Alvarez-Puebla RA; Liz-Marzán LM
    Nanoscale; 2011 Apr; 3(4):1304-15. PubMed ID: 21229160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-enhanced spectroscopy on plasmonic oligomers assembled by AFM nanoxerography.
    Moutet P; Sangeetha NM; Ressier L; Vilar-Vidal N; Comesaña-Hermo M; Ravaine S; Vallée RA; Gabudean AM; Astilean S; Farcau C
    Nanoscale; 2015 Feb; 7(5):2009-22. PubMed ID: 25553777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.