These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 36111875)
1. GraphLoc: a graph neural network model for predicting protein subcellular localization from immunohistochemistry images. Hu JX; Yang Y; Xu YY; Shen HB Bioinformatics; 2022 Oct; 38(21):4941-4948. PubMed ID: 36111875 [TBL] [Abstract][Full Text] [Related]
2. Protein Subcellular Localization Prediction Model Based on Graph Convolutional Network. Zhang T; Gu J; Wang Z; Wu C; Liang Y; Shi X Interdiscip Sci; 2022 Dec; 14(4):937-946. PubMed ID: 35713780 [TBL] [Abstract][Full Text] [Related]
3. ImPLoc: a multi-instance deep learning model for the prediction of protein subcellular localization based on immunohistochemistry images. Long W; Yang Y; Shen HB Bioinformatics; 2020 Apr; 36(7):2244-2250. PubMed ID: 31804670 [TBL] [Abstract][Full Text] [Related]
4. Learning complex subcellular distribution patterns of proteins via analysis of immunohistochemistry images. Xu YY; Shen HB; Murphy RF Bioinformatics; 2020 Mar; 36(6):1908-1914. PubMed ID: 31722369 [TBL] [Abstract][Full Text] [Related]
5. Multi-scale deep learning for the imbalanced multi-label protein subcellular localization prediction based on immunohistochemistry images. Wang F; Wei L Bioinformatics; 2022 Apr; 38(9):2602-2611. PubMed ID: 35212728 [TBL] [Abstract][Full Text] [Related]
6. Incorporating organelle correlations into semi-supervised learning for protein subcellular localization prediction. Xu YY; Yang F; Shen HB Bioinformatics; 2016 Jul; 32(14):2184-92. PubMed ID: 27153655 [TBL] [Abstract][Full Text] [Related]
7. Incorporating label correlations into deep neural networks to classify protein subcellular location patterns in immunohistochemistry images. Hu JX; Yang Y; Xu YY; Shen HB Proteins; 2022 Feb; 90(2):493-503. PubMed ID: 34546597 [TBL] [Abstract][Full Text] [Related]
8. An image-based multi-label human protein subcellular localization predictor (iLocator) reveals protein mislocalizations in cancer tissues. Xu YY; Yang F; Zhang Y; Shen HB Bioinformatics; 2013 Aug; 29(16):2032-40. PubMed ID: 23740749 [TBL] [Abstract][Full Text] [Related]
9. DULoc: quantitatively unmixing protein subcellular location patterns in immunofluorescence images based on deep learning features. Xue MQ; Zhu XL; Wang G; Xu YY Bioinformatics; 2022 Jan; 38(3):827-833. PubMed ID: 34694372 [TBL] [Abstract][Full Text] [Related]
10. Bioimaging-based detection of mislocalized proteins in human cancers by semi-supervised learning. Xu YY; Yang F; Zhang Y; Shen HB Bioinformatics; 2015 Apr; 31(7):1111-9. PubMed ID: 25414362 [TBL] [Abstract][Full Text] [Related]
11. GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug-protein interaction prediction. Xuan P; Fan M; Cui H; Zhang T; Nakaguchi T Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34718408 [TBL] [Abstract][Full Text] [Related]
12. Multiple Protein Subcellular Locations Prediction Based on Deep Convolutional Neural Networks with Self-Attention Mechanism. Cong H; Liu H; Cao Y; Chen Y; Liang C Interdiscip Sci; 2022 Jun; 14(2):421-438. PubMed ID: 35066812 [TBL] [Abstract][Full Text] [Related]
13. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features. Zhou H; Yang Y; Shen HB Bioinformatics; 2017 Mar; 33(6):843-853. PubMed ID: 27993784 [TBL] [Abstract][Full Text] [Related]
14. Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs. Xuan P; Wang S; Cui H; Zhao Y; Zhang T; Wu P Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36088549 [TBL] [Abstract][Full Text] [Related]
15. Protein subcellular localization based on deep image features and criterion learning strategy. Su R; He L; Liu T; Liu X; Wei L Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33320936 [TBL] [Abstract][Full Text] [Related]
16. Enhancing membrane protein subcellular localization prediction by parallel fusion of multi-view features. Yu D; Wu X; Shen H; Yang J; Tang Z; Qi Y; Yang J IEEE Trans Nanobioscience; 2012 Dec; 11(4):375-85. PubMed ID: 22875262 [TBL] [Abstract][Full Text] [Related]
17. Multi-instance learning of graph neural networks for aqueous pKa prediction. Xiong J; Li Z; Wang G; Fu Z; Zhong F; Xu T; Liu X; Huang Z; Liu X; Chen K; Jiang H; Zheng M Bioinformatics; 2022 Jan; 38(3):792-798. PubMed ID: 34643666 [TBL] [Abstract][Full Text] [Related]
18. ML-FGAT: Identification of multi-label protein subcellular localization by interpretable graph attention networks and feature-generative adversarial networks. Wang C; Wang Y; Ding P; Li S; Yu X; Yu B Comput Biol Med; 2024 Mar; 170():107944. PubMed ID: 38215617 [TBL] [Abstract][Full Text] [Related]
19. RNA-binding protein recognition based on multi-view deep feature and multi-label learning. Yang H; Deng Z; Pan X; Shen HB; Choi KS; Wang L; Wang S; Wu J Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32808039 [TBL] [Abstract][Full Text] [Related]
20. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. Chou KC; Shen HB PLoS One; 2010 Jun; 5(6):e11335. PubMed ID: 20596258 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]