These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 36112031)
1. Coupling High-Field Asymmetric Ion Mobility Spectrometry with Capillary Electrophoresis-Electrospray Ionization-Tandem Mass Spectrometry Improves Protein Identifications in Bottom-Up Proteomic Analysis of Low Nanogram Samples. Johnson KR; Greguš M; Ivanov AR J Proteome Res; 2022 Oct; 21(10):2453-2461. PubMed ID: 36112031 [TBL] [Abstract][Full Text] [Related]
2. Capillary Electrophoresis Coupled to Electrospray Ionization Tandem Mass Spectrometry for Ultra-Sensitive Proteomic Analysis of Limited Samples. Johnson KR; Greguš M; Kostas JC; Ivanov AR Anal Chem; 2022 Jan; 94(2):704-713. PubMed ID: 34983182 [TBL] [Abstract][Full Text] [Related]
3. Coupling High-Field Asymmetric Waveform Ion Mobility Spectrometry with Capillary Zone Electrophoresis-Tandem Mass Spectrometry for Top-Down Proteomics. Xu T; Wang Q; Wang Q; Sun L Anal Chem; 2023 Jun; 95(25):9497-9504. PubMed ID: 37254456 [TBL] [Abstract][Full Text] [Related]
4. A Novel Differential Ion Mobility Device Expands the Depth of Proteome Coverage and the Sensitivity of Multiplex Proteomic Measurements. Pfammatter S; Bonneil E; McManus FP; Prasad S; Bailey DJ; Belford M; Dunyach JJ; Thibault P Mol Cell Proteomics; 2018 Oct; 17(10):2051-2067. PubMed ID: 30007914 [TBL] [Abstract][Full Text] [Related]
5. Nanospray FAIMS fractionation provides significant increases in proteome coverage of unfractionated complex protein digests. Swearingen KE; Hoopmann MR; Johnson RS; Saleem RA; Aitchison JD; Moritz RL Mol Cell Proteomics; 2012 Apr; 11(4):M111.014985. PubMed ID: 22186714 [TBL] [Abstract][Full Text] [Related]
6. Improved Sensitivity of Ultralow Flow LC-MS-Based Proteomic Profiling of Limited Samples Using Monolithic Capillary Columns and FAIMS Technology. Greguš M; Kostas JC; Ray S; Abbatiello SE; Ivanov AR Anal Chem; 2020 Nov; 92(21):14702-14712. PubMed ID: 33054160 [TBL] [Abstract][Full Text] [Related]
7. Accurate Quantitative Proteomic Analyses Using Metabolic Labeling and High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS). Pfammatter S; Bonneil E; McManus FP; Thibault P J Proteome Res; 2019 May; 18(5):2129-2138. PubMed ID: 30919622 [TBL] [Abstract][Full Text] [Related]
8. High Field Asymmetric Waveform Ion Mobility Spectrometry in Nontargeted Bottom-up Proteomics of Dried Blood Spots. Rosting C; Yu J; Cooper HJ J Proteome Res; 2018 Jun; 17(6):1997-2004. PubMed ID: 29707944 [TBL] [Abstract][Full Text] [Related]
10. Coupling capillary electrophoresis and high-field asymmetric waveform ion mobility spectrometry mass spectrometry for the analysis of complex lipopolysaccharides. Li J; Purves RW; Richards JC Anal Chem; 2004 Aug; 76(16):4676-83. PubMed ID: 15307776 [TBL] [Abstract][Full Text] [Related]
11. Probing the complementarity of FAIMS and strong cation exchange chromatography in shotgun proteomics. Creese AJ; Shimwell NJ; Larkins KP; Heath JK; Cooper HJ J Am Soc Mass Spectrom; 2013 Mar; 24(3):431-43. PubMed ID: 23400772 [TBL] [Abstract][Full Text] [Related]
12. Multidimensional separation and analysis of alpha-1-acid glycoprotein N-glycopeptides using high-field asymmetric waveform ion mobility spectrometry (FAIMS) and nano-liquid chromatography tandem mass spectrometry. Chandler KB; Marrero Roche DE; Sackstein R Anal Bioanal Chem; 2023 Jan; 415(3):379-390. PubMed ID: 36401639 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of Disposable Trap Column nanoLC-FAIMS-MS/MS for the Proteomic Analysis of FFPE Tissue. Eckert S; Chang YC; Bayer FP; The M; Kuhn PH; Weichert W; Kuster B J Proteome Res; 2021 Dec; 20(12):5402-5411. PubMed ID: 34735149 [TBL] [Abstract][Full Text] [Related]
14. A Compact Quadrupole-Orbitrap Mass Spectrometer with FAIMS Interface Improves Proteome Coverage in Short LC Gradients. Bekker-Jensen DB; Martínez-Val A; Steigerwald S; Rüther P; Fort KL; Arrey TN; Harder A; Makarov A; Olsen JV Mol Cell Proteomics; 2020 Apr; 19(4):716-729. PubMed ID: 32051234 [TBL] [Abstract][Full Text] [Related]
15. FAIMS Enhances the Detection of PTM Crosstalk Sites. Adoni KR; Cunningham DL; Heath JK; Leney AC J Proteome Res; 2022 Apr; 21(4):930-939. PubMed ID: 35235327 [TBL] [Abstract][Full Text] [Related]
16. Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for quantitative parallel reaction monitoring of peptide abundance and single-shot proteomic analysis of a human cell line. Sun L; Zhu G; Mou S; Zhao Y; Champion MM; Dovichi NJ J Chromatogr A; 2014 Sep; 1359():303-8. PubMed ID: 25082526 [TBL] [Abstract][Full Text] [Related]
17. Capillary zone electrophoresis-high field asymmetric ion mobility spectrometry-tandem mass spectrometry for top-down characterization of histone proteoforms. Wang Q; Fang F; Wang Q; Sun L Proteomics; 2024 Feb; 24(3-4):e2200389. PubMed ID: 37963825 [TBL] [Abstract][Full Text] [Related]
18. Enhanced Peptide Detection Toward Single-Neuron Proteomics by Reversed-Phase Fractionation Capillary Electrophoresis Mass Spectrometry. Choi SB; Lombard-Banek C; Muñoz-LLancao P; Manzini MC; Nemes P J Am Soc Mass Spectrom; 2018 May; 29(5):913-922. PubMed ID: 29147852 [TBL] [Abstract][Full Text] [Related]
19. Optimized Workflow for Multiplexed Phosphorylation Analysis of TMT-Labeled Peptides Using High-Field Asymmetric Waveform Ion Mobility Spectrometry. Schweppe DK; Rusin SF; Gygi SP; Paulo JA J Proteome Res; 2020 Jan; 19(1):554-560. PubMed ID: 31799850 [TBL] [Abstract][Full Text] [Related]
20. Electrophoresis-Correlative Data-Independent Acquisition (Eco-DIA) Improves the Sensitivity of Mass Spectrometry for Limited Proteome Amounts. Shen B; Chen J; Nemes P Anal Chem; 2024 Oct; 96(39):15581-15587. PubMed ID: 39292951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]