These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36112094)

  • 1. Visible-Band Chiroptical Meta-devices with Phase-Change Adjusted Optical Chirality.
    Zhang L; Gao K; Lu F; Xu L; Rahmani M; Sun L; Gao F; Zhang W; Mei T
    Nano Lett; 2022 Sep; 22(18):7628-7635. PubMed ID: 36112094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanophotonic Platforms for Chiral Sensing and Separation.
    Solomon ML; Saleh AAE; Poulikakos LV; Abendroth JM; Tadesse LF; Dionne JA
    Acc Chem Res; 2020 Mar; 53(3):588-598. PubMed ID: 31913015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lossless dielectric metasurface with giant intrinsic chirality for terahertz wave.
    Li J; Li J; Zheng C; Yang Y; Yue Z; Hao X; Zhao H; Li F; Tang T; Wu L; Li J; Zhang Y; Yao J
    Opt Express; 2021 Aug; 29(18):28329-28337. PubMed ID: 34614966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanophotonic Chirality Transfer to Dielectric Mie Resonators.
    Mohammadi E; Raziman TV; Curto AG
    Nano Lett; 2023 May; 23(9):3978-3984. PubMed ID: 37126640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Switching the Optical Chirality in Magnetoplasmonic Metasurfaces Using Applied Magnetic Fields.
    Qin J; Deng L; Kang T; Nie L; Feng H; Wang H; Yang R; Liang X; Tang T; Shen J; Li C; Wang H; Luo Y; Armelles G; Bi L
    ACS Nano; 2020 Mar; 14(3):2808-2816. PubMed ID: 32074454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of chirality in a set of key intermediates of pharmaceutical interest, 3-aryl-substituted-γ-butyrolactones, evidenced by chiral HPLC separation and by chiroptical spectroscopies.
    Rossi D; Nasti R; Collina S; Mazzeo G; Ghidinelli S; Longhi G; Memo M; Abbate S
    J Pharm Biomed Anal; 2017 Sep; 144():41-51. PubMed ID: 28118957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconfigurable Plasmonic Chirality: Fundamentals and Applications.
    Neubrech F; Hentschel M; Liu N
    Adv Mater; 2020 Oct; 32(41):e1905640. PubMed ID: 32077543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circular Dichroism Based Chirality Sensing with Supramolecular Host-Guest Chemistry.
    Quan M; Pang XY; Jiang W
    Angew Chem Int Ed Engl; 2022 Jun; 61(23):e202201258. PubMed ID: 35315199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook.
    Valev VK; Baumberg JJ; Sibilia C; Verbiest T
    Adv Mater; 2013 May; 25(18):2517-34. PubMed ID: 23553650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical study of tunable enhanced chirality in multilayer stack achiral phase-change metamaterials.
    Cao T; Li Y; Wei CW; Qiu YM
    Opt Express; 2017 May; 25(9):9911-9925. PubMed ID: 28468371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconfigurable chirality with achiral excitonic materials in the strong-coupling regime.
    Stamatopoulou PE; Droulias S; Acuna GP; Mortensen NA; Tserkezis C
    Nanoscale; 2022 Dec; 14(47):17581-17588. PubMed ID: 36408680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional artificial chirality towards low-cost and ultra-sensitive enantioselective sensing.
    Kim Y; Kim H; Yang Y; Badloe T; Jeon N; Rho J
    Nanoscale; 2022 Mar; 14(10):3720-3730. PubMed ID: 35230363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen-Regulated Chiral Nanoplasmonics.
    Duan X; Kamin S; Sterl F; Giessen H; Liu N
    Nano Lett; 2016 Feb; 16(2):1462-6. PubMed ID: 26745446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanophotonic Approaches for Chirality Sensing.
    Warning LA; Miandashti AR; McCarthy LA; Zhang Q; Landes CF; Link S
    ACS Nano; 2021 Oct; 15(10):15538-15566. PubMed ID: 34609836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic Nanosensors with Extraordinary Sensitivity to Molecularly Enantioselective Recognition at Nanoscale Interfaces.
    Liu S; Ma X; Song M; Ji CY; Song J; Ji Y; Ma S; Jiang J; Wu X; Li J; Liu M; Wang RY
    ACS Nano; 2021 Dec; 15(12):19535-19545. PubMed ID: 34797065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral Plasmonic Nanostructures Enabled by Bottom-Up Approaches.
    Urban MJ; Shen C; Kong XT; Zhu C; Govorov AO; Wang Q; Hentschel M; Liu N
    Annu Rev Phys Chem; 2019 Jun; 70():275-299. PubMed ID: 31112458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chirality and chiroptical properties of amyloid fibrils.
    Dzwolak W
    Chirality; 2014 Sep; 26(9):580-7. PubMed ID: 24816990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chirality detection of enantiomers using twisted optical metamaterials.
    Zhao Y; Askarpour AN; Sun L; Shi J; Li X; Alù A
    Nat Commun; 2017 Jan; 8():14180. PubMed ID: 28120825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chiral nanocrystals: plasmonic spectra and circular dichroism.
    Fan Z; Govorov AO
    Nano Lett; 2012 Jun; 12(6):3283-9. PubMed ID: 22591323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chirality-sensing binaphthocrown ether-polythiophene conjugate.
    Fukuhara G; Inoue Y
    Chemistry; 2010 Jul; 16(26):7859-64. PubMed ID: 20491122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.