These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 36112264)
1. Extracellular vesicles derived from bone marrow mesenchymal stem cells loaded on magnetic nanoparticles delay the progression of diabetic osteoporosis via delivery of miR-150-5p. Xu C; Wang Z; Liu Y; Wei B; Liu X; Duan K; Zhou P; Xie Z; Wu M; Guan J Cell Biol Toxicol; 2023 Aug; 39(4):1257-1274. PubMed ID: 36112264 [TBL] [Abstract][Full Text] [Related]
2. Harnessing GMNP-loaded BMSC-derived EVs to target miR-3064-5p via MEG3 overexpression: Implications for diabetic osteoporosis therapy in rats. Xu C; Wang Z; Liu YJ; Duan K; Guan J Cell Signal; 2024 Jun; 118():111055. PubMed ID: 38246512 [TBL] [Abstract][Full Text] [Related]
3. Delivery of miR-15b-5p via magnetic nanoparticle-enhanced bone marrow mesenchymal stem cell-derived extracellular vesicles mitigates diabetic osteoporosis by targeting GFAP. Xu C; Wang Z; Liu Y; Duan K; Guan J Cell Biol Toxicol; 2024 Jul; 40(1):52. PubMed ID: 38967699 [TBL] [Abstract][Full Text] [Related]
4. Bone marrow mesenchymal stem cell-derived extracellular vesicles containing miR-497-5p inhibit RSPO2 and accelerate OPLL. Chen X; Wang S; Cui Z; Gu Y Life Sci; 2021 Aug; 279():119481. PubMed ID: 33857573 [TBL] [Abstract][Full Text] [Related]
5. Extracellular vesicles from GPNMB-modified bone marrow mesenchymal stem cells attenuate bone loss in an ovariectomized rat model. Huang B; Su Y; Shen E; Song M; Liu D; Qi H Life Sci; 2021 May; 272():119208. PubMed ID: 33582177 [TBL] [Abstract][Full Text] [Related]
6. BMSC-derived extracellular vesicles promoted osteogenesis via Axin2 inhibition by delivering MiR-16-5p. Duan J; Li H; Wang C; Yao J; Jin Y; Zhao J; Zhang Y; Liu M; Sun H Int Immunopharmacol; 2023 Jul; 120():110319. PubMed ID: 37216799 [TBL] [Abstract][Full Text] [Related]
7. The Inhibition of MicroRNA-139-5p Promoted Osteoporosis of Bone Marrow-Derived Mesenchymal Stem Cells by Targeting Wnt/Beta-Catenin Signaling Pathway by NOTCH1. Feng Y; Wan P; Yin L; Lou X J Microbiol Biotechnol; 2020 Mar; 30(3):448-458. PubMed ID: 31752063 [TBL] [Abstract][Full Text] [Related]
8. Small-sized extracellular vesicles (EVs) derived from acute myeloid leukemia bone marrow mesenchymal stem cells transfer miR-26a-5p to promote acute myeloid leukemia cell proliferation, migration, and invasion. Ji D; He Y; Lu W; Rong Y; Li F; Huang X; Huang R; Jiang Y; Chen G Hum Cell; 2021 May; 34(3):965-976. PubMed ID: 33620671 [TBL] [Abstract][Full Text] [Related]
9. Urine-derived stem cells-extracellular vesicles ameliorate diabetic osteoporosis through HDAC4/HIF-1α/VEGFA axis by delivering microRNA-26a-5p. Zhang D; Du J; Yu M; Suo L Cell Biol Toxicol; 2023 Oct; 39(5):2243-2257. PubMed ID: 35554780 [TBL] [Abstract][Full Text] [Related]
10. Extracellular vesicles derived from bone marrow mesenchymal stem cells alleviate neuroinflammation after diabetic intracerebral hemorrhage via the miR-183-5p/PDCD4/NLRP3 pathway. Ding H; Jia Y; Lv H; Chang W; Liu F; Wang D J Endocrinol Invest; 2021 Dec; 44(12):2685-2698. PubMed ID: 34024028 [TBL] [Abstract][Full Text] [Related]
11. Mesenchymal stem cells-derived extracellular vesicles ameliorate Alzheimer's disease in rat models via the microRNA-29c-3p/BACE1 axis and the Wnt/β-catenin pathway. Sha S; Shen X; Cao Y; Qu L Aging (Albany NY); 2021 Jun; 13(11):15285-15306. PubMed ID: 34086603 [TBL] [Abstract][Full Text] [Related]
12. microRNA-148a-3p in extracellular vesicles derived from bone marrow mesenchymal stem cells suppresses SMURF1 to prevent osteonecrosis of femoral head. Huang S; Li Y; Wu P; Xiao Y; Duan N; Quan J; Du W J Cell Mol Med; 2020 Oct; 24(19):11512-11523. PubMed ID: 32871042 [TBL] [Abstract][Full Text] [Related]
13. Extracellular vesicles from bone marrow mesenchymal stem cells alleviate osteoporosis in mice through USP7-mediated YAP1 protein stability and the Wnt/β-catenin pathway. Wang X; Zou C; Hou C; Bian Z; Jiang W; Li M; Zhu L Biochem Pharmacol; 2023 Nov; 217():115829. PubMed ID: 37748664 [TBL] [Abstract][Full Text] [Related]
14. Mesenchymal Stem Cell-Derived Extracellular Vesicles Inhibit Osteoporosis via MicroRNA-27a-Induced Inhibition of DKK2-Mediated Wnt/β-Catenin Pathway. Wang Y; Zhou X; Wang D Inflammation; 2022 Apr; 45(2):780-799. PubMed ID: 34676493 [TBL] [Abstract][Full Text] [Related]
15. Neuroprotection of Bone Marrow-Derived Mesenchymal Stem Cell-Derived Extracellular Vesicle-Enclosed miR-410 Correlates with HDAC4 Knockdown in Hypoxic-Ischemic Brain Damage. Shen M; Zheng R; Kan X Neurochem Res; 2022 Oct; 47(10):3150-3166. PubMed ID: 36028735 [TBL] [Abstract][Full Text] [Related]
16. Extracellular vesicles derived from bone marrow mesenchymal stem cells alleviate neurological deficit and endothelial cell dysfunction after subarachnoid hemorrhage via the KLF3-AS1/miR-83-5p/TCF7L2 axis. Cheng M; Liu L; Zhang T; Chen Y; Wang Q; Wu Y Exp Neurol; 2022 Oct; 356():114151. PubMed ID: 35738418 [TBL] [Abstract][Full Text] [Related]
17. miR-124-3p promotes BMSC osteogenesis via suppressing the GSK-3β/β-catenin signaling pathway in diabetic osteoporosis rats. Li Z; Zhao H; Chu S; Liu X; Qu X; Li J; Liu D; Li H In Vitro Cell Dev Biol Anim; 2020 Oct; 56(9):723-734. PubMed ID: 33085064 [TBL] [Abstract][Full Text] [Related]
18. Bone Mesenchymal Stem Cell-Derived Extracellular Vesicles Containing Long Noncoding RNA NEAT1 Relieve Osteoarthritis. Zhang S; Jin Z Oxid Med Cell Longev; 2022; 2022():5517648. PubMed ID: 35480871 [TBL] [Abstract][Full Text] [Related]
19. Quercetin promotes bone marrow mesenchymal stem cell proliferation and osteogenic differentiation through the H19/miR-625-5p axis to activate the Wnt/β-catenin pathway. Bian W; Xiao S; Yang L; Chen J; Deng S BMC Complement Med Ther; 2021 Sep; 21(1):243. PubMed ID: 34592982 [TBL] [Abstract][Full Text] [Related]
20. Bone Marrow Mesenchymal Stem Cells Release miR-378a-5p-Carried Extracellular Vesicles to Alleviate Rheumatoid Arthritis. Zhang Y; Jiao Z; Wang S J Innate Immun; 2023; 15(1):893-910. PubMed ID: 37926093 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]