These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36112431)

  • 61. Coefficient of performance at maximum figure of merit and its bounds for low-dissipation Carnot-like refrigerators.
    Wang Y; Li M; Tu ZC; Hernández AC; Roco JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011127. PubMed ID: 23005388
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Maxwell's demon in biological systems.
    Walker I
    Acta Biotheor; 1976; 25(2-3):103-10. PubMed ID: 823743
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Low-temperature storage of bone marrow in nitrogen vapor-phase refrigerators: decreased temperature gradients with an aluminum racking system.
    Rowley SD; Byrne DV
    Transfusion; 1992 Oct; 32(8):750-4. PubMed ID: 1412683
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Measurement of the spin temperature of optically cooled nuclei and GaAs hyperfine constants in GaAs/AlGaAs quantum dots.
    Chekhovich EA; Ulhaq A; Zallo E; Ding F; Schmidt OG; Skolnick MS
    Nat Mater; 2017 Oct; 16(10):982-986. PubMed ID: 28783160
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Classical emulation of quantum-coherent thermal machines.
    González JO; Palao JP; Alonso D; Correa LA
    Phys Rev E; 2019 Jun; 99(6-1):062102. PubMed ID: 31330638
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Refrigeration Performance and Entropy Generation Analysis for Reciprocating Magnetic Refrigerator with Gd Plates.
    You Y; Wu Z; Yang Y; Yu J; Zhang D; Zhang Z
    Entropy (Basel); 2018 Jun; 20(6):. PubMed ID: 33265517
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Experimental Realization of a Quantum Dot Energy Harvester.
    Jaliel G; Puddy RK; Sánchez R; Jordan AN; Sothmann B; Farrer I; Griffiths JP; Ritchie DA; Smith CG
    Phys Rev Lett; 2019 Sep; 123(11):117701. PubMed ID: 31573223
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Performance bounds of nonadiabatic quantum harmonic Otto engine and refrigerator under a squeezed thermal reservoir.
    Singh V; Müstecaplıoğlu ÖE
    Phys Rev E; 2020 Dec; 102(6-1):062123. PubMed ID: 33466082
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Measurement-induced operation of two-ion quantum heat machines.
    Chand S; Biswas A
    Phys Rev E; 2017 Mar; 95(3-1):032111. PubMed ID: 28415299
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Unifying paradigms of quantum refrigeration: Fundamental limits of cooling and associated work costs.
    Clivaz F; Silva R; Haack G; Brask JB; Brunner N; Huber M
    Phys Rev E; 2019 Oct; 100(4-1):042130. PubMed ID: 31770926
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Three-terminal refrigerator based on resonant-tunneling quantum wells.
    Lin Z; Yang YY; Li W; Wang J; He J
    Phys Rev E; 2020 Feb; 101(2-1):022117. PubMed ID: 32168711
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators.
    Gelbwaser-Klimovsky D; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022102. PubMed ID: 25215684
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Maxwell's Daemon: information versus particle statistics.
    Plesch M; Dahlsten O; Goold J; Vedral V
    Sci Rep; 2014 Nov; 4():6995. PubMed ID: 25385291
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Minimal self-contained quantum refrigeration machine based on four quantum dots.
    Venturelli D; Fazio R; Giovannetti V
    Phys Rev Lett; 2013 Jun; 110(25):256801. PubMed ID: 23829751
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Coefficient of performance for a low-dissipation Carnot-like refrigerator with nonadiabatic dissipation.
    Hu Y; Wu F; Ma Y; He J; Wang J; Hernández AC; Roco JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062115. PubMed ID: 24483394
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Optimized dynamical decoupling in a model quantum memory.
    Biercuk MJ; Uys H; VanDevender AP; Shiga N; Itano WM; Bollinger JJ
    Nature; 2009 Apr; 458(7241):996-1000. PubMed ID: 19396139
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Single-Atom Heat Machines Enabled by Energy Quantization.
    Gelbwaser-Klimovsky D; Bylinskii A; Gangloff D; Islam R; Aspuru-Guzik A; Vuletic V
    Phys Rev Lett; 2018 Apr; 120(17):170601. PubMed ID: 29756824
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Minimal universal quantum heat machine.
    Gelbwaser-Klimovsky D; Alicki R; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012140. PubMed ID: 23410316
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Quantum refrigeration cycles using spin-1/2 systems as the working substance.
    He J; Chen J; Hua B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036145. PubMed ID: 11909203
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance.
    Baugh J; Moussa O; Ryan CA; Nayak A; Laflamme R
    Nature; 2005 Nov; 438(7067):470-3. PubMed ID: 16306986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.