These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36112727)

  • 1. A Computational Template for Three-Dimensional Modeling of the Vascular Scaffold of the Human Thyroid Gland.
    Spaletta G; Sofroniou M; Barbaro F; di Conza G; Mosca S; Toni R
    Tissue Eng Part A; 2023 Jan; 29(1-2):47-57. PubMed ID: 36112727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bioartificial thyroid: a biotechnological perspective in endocrine organ engineering for transplantation replacement.
    Toni R; Casa CD; Spaletta G; Marchetti G; Mazzoni P; Bodria M; Ravera S; Dallatana D; Castorina S; Riccioli V; Castorina EG; Antoci S; Campanile E; Raise G; Rossi R; Ugolotti G; Martorella A; Roti E; Sgallari F; Pinchera A
    Acta Biomed; 2007; 78 Suppl 1():129-55. PubMed ID: 17465331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ex situ bioengineering of bioartificial endocrine glands: a new frontier in regenerative medicine of soft tissue organs.
    Toni R; Tampieri A; Zini N; Strusi V; Sandri M; Dallatana D; Spaletta G; Bassoli E; Gatto A; Ferrari A; Martin I
    Ann Anat; 2011 Oct; 193(5):381-94. PubMed ID: 21803554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study on the relationship between intraglandular arterial distribution and thyroid lobe shape: implications for biotechnology of a bioartificial thyroid.
    Toni R; Casa CD; Bodria M; Spaletta G; Vella R; Castorina S; Gatto A; Teti G; Falconi M; Rago T; Vitti P; Sgallari F
    Ann Anat; 2008 Nov; 190(5):432-41. PubMed ID: 18952412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A bioartificial and vasculomorphic bone matrix-based organoid mimicking microanatomy of flat and short bones.
    Toni R; Barbaro F; Di Conza G; Zini N; Remaggi G; Elviri L; Spaletta G; Quarantini E; Quarantini M; Mosca S; Caravelli S; Mosca M; Ravanetti F; Sprio S; Tampieri A
    J Biomed Mater Res B Appl Biomater; 2024 Jan; 112(1):e35329. PubMed ID: 37898921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Bioprinting of Adipose-Derived Stem Cells for Organ Manufacturing.
    Wang X; Liu C
    Adv Exp Med Biol; 2018; 1078():3-14. PubMed ID: 30357615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tubular collagen scaffolds with radial elasticity for hollow organ regeneration.
    Versteegden LR; van Kampen KA; Janke HP; Tiemessen DM; Hoogenkamp HR; Hafmans TG; Roozen EA; Lomme RM; van Goor H; Oosterwijk E; Feitz WF; van Kuppevelt TH; Daamen WF
    Acta Biomater; 2017 Apr; 52():1-8. PubMed ID: 28179160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioartificial Organ Manufacturing Technologies.
    Wang X
    Cell Transplant; 2019 Jan; 28(1):5-17. PubMed ID: 30477315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Bioprinting: Toward the Era of Manufacturing Human Organs as Spare Parts for Healthcare and Medicine.
    Mir TA; Nakamura M
    Tissue Eng Part B Rev; 2017 Jun; 23(3):245-256. PubMed ID: 28103751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A three-dimensional bioprinting system for use with a hydrogel-based biomaterial and printing parameter characterization.
    Song SJ; Choi J; Park YD; Lee JJ; Hong SY; Sun K
    Artif Organs; 2010 Nov; 34(11):1044-8. PubMed ID: 21092048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The reproduction accuracy for stereolithographic model of the thyroid gland derived from the visible human dataset.
    Kapakin S; Demiryurek D
    Saudi Med J; 2009 Jul; 30(7):887-92. PubMed ID: 19618001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a personalized and realistic educational thyroid cancer phantom based on CT images: An evaluation of accuracy between three different 3D printers.
    Hong D; Lee S; Kim T; Baek JH; Lee YM; Chung KW; Sung TY; Kim N
    Comput Biol Med; 2019 Oct; 113():103393. PubMed ID: 31445227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SCREENED: A Multistage Model of Thyroid Gland Function for Screening Endocrine-Disrupting Chemicals in a Biologically Sex-Specific Manner.
    Moroni L; Barbaro F; Caiment F; Coleman O; Costagliola S; Conza GD; Elviri L; Giselbrecht S; Krause C; Mota C; Nazzari M; Pennington SR; Ringwald A; Sandri M; Thomas S; Waddington J; Toni R
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32455722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioprinting of a functional vascularized mouse thyroid gland construct.
    Bulanova EA; Koudan EV; Degosserie J; Heymans C; Pereira FD; Parfenov VA; Sun Y; Wang Q; Akhmedova SA; Sviridova IK; Sergeeva NS; Frank GA; Khesuani YD; Pierreux CE; Mironov VA
    Biofabrication; 2017 Aug; 9(3):034105. PubMed ID: 28707625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration.
    Huang S; Yao B; Xie J; Fu X
    Acta Biomater; 2016 Mar; 32():170-177. PubMed ID: 26747979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a Tailored Thyroid Gland Phantom for Fine-Needle Aspiration Cytology by Three-Dimensional Printing.
    Baba M; Matsumoto K; Yamasaki N; Shindo H; Yano H; Matsumoto M; Otsubo R; John Lawn M; Matsuo N; Yamamoto I; Hidaka S; Nagayasu T
    J Surg Educ; 2017; 74(6):1039-1046. PubMed ID: 28642054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer-Aided Design and Manufacturing (CAD/CAM) for Bioprinting.
    Fay CD
    Methods Mol Biol; 2020; 2140():27-41. PubMed ID: 32207104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies.
    Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immune response against the biomaterials used in 3D bioprinting of organs.
    Elalouf A
    Transpl Immunol; 2021 Dec; 69():101446. PubMed ID: 34389430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application Status of Sacrificial Biomaterials in 3D Bioprinting.
    Liu S; Wang T; Li S; Wang X
    Polymers (Basel); 2022 May; 14(11):. PubMed ID: 35683853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.