These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36113294)

  • 1. A country-level assessment of the deployment potential of greenhouse gas removal technologies.
    Asibor JO; Clough PT; Nabavi SA; Manovic V
    J Environ Manage; 2022 Dec; 323():116211. PubMed ID: 36113294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of optimal conditions for the performance of greenhouse gas removal methods.
    Asibor JO; Clough PT; Nabavi SA; Manovic V
    J Environ Manage; 2021 Sep; 294():113039. PubMed ID: 34153633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Climate Mitigation Challenge-Where Do We Stand?
    Princiotta FT
    J Air Waste Manag Assoc; 2021 Oct; 71(10):1234-1250. PubMed ID: 34233128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geospatial analysis of near-term potential for carbon-negative bioenergy in the United States.
    Baik E; Sanchez DL; Turner PA; Mach KJ; Field CB; Benson SM
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3290-3295. PubMed ID: 29531081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soil carbon sequestration and biochar as negative emission technologies.
    Smith P
    Glob Chang Biol; 2016 Mar; 22(3):1315-24. PubMed ID: 26732128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration.
    Woolf D; Lehmann J; Lee DR
    Nat Commun; 2016 Oct; 7():13160. PubMed ID: 27767177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution patterns of bioenergy with carbon capture and storage (BECCS) from a science mapping perspective.
    Li M; Lu Y; Huang M
    Sci Total Environ; 2021 Apr; 766():144318. PubMed ID: 33418264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Will climate warming of terrestrial ecosystem contribute to increase soil greenhouse gas fluxes in plot experiment? A global meta-analysis.
    Wang X; Hu HB; Zheng X; Deng WB; Chen JY; Zhang S; Cheng C
    Sci Total Environ; 2022 Jun; 827():154114. PubMed ID: 35231511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential of molecular biology and biotechnology for dealing with global warming: The biosciences will have to play a leading role in developing new technologies for mitigating the impact of greenhouse gas emissions.
    Hunter P
    EMBO Rep; 2016 Jul; 17(7):946-8. PubMed ID: 27283941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An inter-model assessment of the role of direct air capture in deep mitigation pathways.
    Realmonte G; Drouet L; Gambhir A; Glynn J; Hawkes A; Köberle AC; Tavoni M
    Nat Commun; 2019 Jul; 10(1):3277. PubMed ID: 31332176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application.
    Bamminger C; Poll C; Marhan S
    Glob Chang Biol; 2018 Jan; 24(1):e318-e334. PubMed ID: 28816416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term effects of biochar application on greenhouse gas production and microbial community in temperate forest soils under increasing temperature.
    Cui J; Glatzel S; Bruckman VJ; Wang B; Lai DYF
    Sci Total Environ; 2021 May; 767():145021. PubMed ID: 33636794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of foreign direct investments, economic development and energy consumption on greenhouse gas emissions in developing countries.
    Sarkodie SA; Strezov V
    Sci Total Environ; 2019 Jan; 646():862-871. PubMed ID: 30064112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of greenhouse gas emission flux from agricultural lands of Khuzestan province in Iran.
    Moradi-Majd N; Fallah-Ghalhari G; Chatrenor M
    Environ Monit Assess; 2022 Sep; 194(11):811. PubMed ID: 36129556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fighting global warming by greenhouse gas removal: destroying atmospheric nitrous oxide thanks to synergies between two breakthrough technologies.
    Ming T; de Richter R; Shen S; Caillol S
    Environ Sci Pollut Res Int; 2016 Apr; 23(7):6119-38. PubMed ID: 26805926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review of post-combustion carbon dioxide capture technologies using activated carbon.
    Mukherjee A; Okolie JA; Abdelrasoul A; Niu C; Dalai AK
    J Environ Sci (China); 2019 Sep; 83():46-63. PubMed ID: 31221387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogeochemical transformation of greenhouse gas emissions from terrestrial to atmospheric environment and potential feedback to climate forcing.
    Shakoor A; Ashraf F; Shakoor S; Mustafa A; Rehman A; Altaf MM
    Environ Sci Pollut Res Int; 2020 Nov; 27(31):38513-38536. PubMed ID: 32770337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-Resolved Cost Analysis of Natural Gas Power Plant Conversion to Bioenergy with Carbon Capture and Storage to Support Net-Zero Emissions.
    Sproul E; Barlow J; Quinn JC
    Environ Sci Technol; 2020 Dec; 54(23):15338-15346. PubMed ID: 33183006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioenergy Crops for Low Warming Targets Require Half of the Present Agricultural Fertilizer Use.
    Li W; Ciais P; Han M; Zhao Q; Chang J; Goll DS; Zhu L; Wang J
    Environ Sci Technol; 2021 Aug; 55(15):10654-10661. PubMed ID: 34288664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Greenhouse Gas Inventory Model for Biochar Additions to Soil.
    Woolf D; Lehmann J; Ogle S; Kishimoto-Mo AW; McConkey B; Baldock J
    Environ Sci Technol; 2021 Nov; 55(21):14795-14805. PubMed ID: 34637286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.