These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 36113310)

  • 1. Surface behaviors of droplet manipulation in microfluidics devices.
    Wu L; Guo Z; Liu W
    Adv Colloid Interface Sci; 2022 Oct; 308():102770. PubMed ID: 36113310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-powered droplet manipulation system for microfluidics based on triboelectric nanogenerator harvesting rotary energy.
    Yu J; Wei X; Guo Y; Zhang Z; Rui P; Zhao Y; Zhang W; Shi S; Wang P
    Lab Chip; 2021 Jan; 21(2):284-295. PubMed ID: 33439205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-cell droplet microfluidics for biomedical applications.
    Liu D; Sun M; Zhang J; Hu R; Fu W; Xuanyuan T; Liu W
    Analyst; 2022 May; 147(11):2294-2316. PubMed ID: 35506869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Materials and methods for droplet microfluidic device fabrication.
    Elvira KS; Gielen F; Tsai SSH; Nightingale AM
    Lab Chip; 2022 Mar; 22(5):859-875. PubMed ID: 35170611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Taking advantage of reduced droplet-surface interaction to optimize transport of bioanalytes in digital microfluidics.
    Freire SL; Thorne N; Wutkowski M; Dao S
    J Vis Exp; 2014 Nov; (93):e52091. PubMed ID: 25407533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid Digital-Droplet Microfluidic Chip for Applications in Droplet Digital Nucleic Acid Amplification: Design, Fabrication and Characterization.
    Coelho BJ; Neto JP; Sieira B; Moura AT; Fortunato E; Martins R; Baptista PV; Igreja R; Águas H
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A combined structural and wettability gradient surface for directional droplet transport and efficient fog collection.
    Tang X; Huang J; Guo Z; Liu W
    J Colloid Interface Sci; 2021 Dec; 604():526-536. PubMed ID: 34280753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Picoliter agar droplet breakup in microfluidics meets microbiology application: numerical and experimental approaches.
    Khater A; Abdelrehim O; Mohammadi M; Azarmanesh M; Janmaleki M; Salahandish R; Mohamad A; Sanati-Nezhad A
    Lab Chip; 2020 Jun; 20(12):2175-2187. PubMed ID: 32420570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Droplet microfluidics based microseparation systems.
    Xiao Z; Niu M; Zhang B
    J Sep Sci; 2012 Jun; 35(10-11):1284-93. PubMed ID: 22733508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic valves in microfluidic channels for droplet manipulation.
    Qin X; Wei X; Li L; Wang H; Jiang Z; Sun D
    Lab Chip; 2021 Aug; 21(16):3165-3173. PubMed ID: 34190278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterning Wettability for Open-Surface Fluidic Manipulation: Fundamentals and Applications.
    Sinha Mahapatra P; Ganguly R; Ghosh A; Chatterjee S; Lowrey S; Sommers AD; Megaridis CM
    Chem Rev; 2022 Nov; 122(22):16752-16801. PubMed ID: 36195098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Printhead on a chip: empowering droplet-based bioprinting with microfluidics.
    Zhang P; Liu C; Modavi C; Abate A; Chen H
    Trends Biotechnol; 2024 Mar; 42(3):353-368. PubMed ID: 37777352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Droplet manipulation on superhydrophobic surfaces based on external stimulation: A review.
    Yang C; Zeng Q; Huang J; Guo Z
    Adv Colloid Interface Sci; 2022 Aug; 306():102724. PubMed ID: 35780752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidics for Biosynthesizing: from Droplets and Vesicles to Artificial Cells.
    Ai Y; Xie R; Xiong J; Liang Q
    Small; 2020 Mar; 16(9):e1903940. PubMed ID: 31603270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demand-driven active droplet generation and sorting based on positive pressure-controlled fluid wall.
    Zhang Y; Lin Y; Hong X; Di C; Xin Y; Wang X; Qi S; Liu BF; Zhang Z; Du W
    Anal Bioanal Chem; 2023 Sep; 415(22):5311-5322. PubMed ID: 37392212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing droplet transition capabilities using sloped microfluidic channel geometry for stable droplet operation.
    Wippold JA; Huang C; Stratis-Cullum D; Han A
    Biomed Microdevices; 2020 Jan; 22(1):15. PubMed ID: 31965327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent methods of droplet microfluidics and their applications in spheroids and organoids.
    Wang Y; Liu M; Zhang Y; Liu H; Han L
    Lab Chip; 2023 Mar; 23(5):1080-1096. PubMed ID: 36628972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric-Field-Induced Selective Directed Transport of Diverse Droplets.
    Wu J; Li X; Lin T; Zhuang L; Tang B; Liu F; Zhou G
    ACS Appl Mater Interfaces; 2024 Jan; 16(3):4126-4137. PubMed ID: 38191293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis.
    Chen P; Li S; Guo Y; Zeng X; Liu BF
    Anal Chim Acta; 2020 Aug; 1125():94-113. PubMed ID: 32674786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable size and form of droplets in microfluidic-assisted devices: Effects of channel geometry and fluid velocity on droplet size.
    Sartipzadeh O; Naghib SM; Seyfoori A; Rahmanian M; Fateminia FS
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110606. PubMed ID: 32228988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.