These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36113350)

  • 81. Removal of polybrominated diphenyl ethers by biomass carbon-supported nanoscale zerovalent iron particles: influencing factors, kinetics, and mechanism.
    Fu R; Xu Z; Peng L; Bi D
    Environ Sci Pollut Res Int; 2016 Dec; 23(23):23983-23993. PubMed ID: 27634155
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Enhanced removal of vanadium(V) from groundwater by layered double hydroxide-supported nanoscale zerovalent iron.
    Kong X; Chen J; Tang Y; Lv Y; Chen T; Wang H
    J Hazard Mater; 2020 Jun; 392():122392. PubMed ID: 32208307
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Iron turning waste: Low cost and sustainable permeable reactive barrier media for remediating dieldrin, endrin, DDT and lindane in groundwater.
    Abbas T; Wadhawan T; Khan A; McEvoy J; Khan E
    Environ Pollut; 2021 Nov; 289():117825. PubMed ID: 34330012
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A new insight on the core-shell structure of zerovalent iron nanoparticles and its application for Pb(II) sequestration.
    Zhang Y; Su Y; Zhou X; Dai C; Keller AA
    J Hazard Mater; 2013 Dec; 263 Pt 2():685-93. PubMed ID: 24231326
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Performance of nanoscale zero-valent iron in nitrate reduction from water using a laboratory-scale continuous-flow system.
    Khalil AME; Eljamal O; Saha BB; Matsunaga N
    Chemosphere; 2018 Apr; 197():502-512. PubMed ID: 29407812
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Enhanced nitrate-nitrogen removal by modified attapulgite-supported nanoscale zero-valent iron treating simulated groundwater.
    Dong L; Lin L; Li Q; Huang Z; Tang X; Wu M; Li C; Cao X; Scholz M
    J Environ Manage; 2018 May; 213():151-158. PubMed ID: 29494931
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Reactivity, Selectivity, and Long-Term Performance of Sulfidized Nanoscale Zerovalent Iron with Different Properties.
    Xu J; Wang Y; Weng C; Bai W; Jiao Y; Kaegi R; Lowry GV
    Environ Sci Technol; 2019 May; 53(10):5936-5945. PubMed ID: 31022346
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites for the Removal of Heavy Metal Ions: A Review.
    Zou Y; Wang X; Khan A; Wang P; Liu Y; Alsaedi A; Hayat T; Wang X
    Environ Sci Technol; 2016 Jul; 50(14):7290-304. PubMed ID: 27331413
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Mechanism and influence factors of chromium(VI) removal by sulfide-modified nanoscale zerovalent iron.
    Lv D; Zhou J; Cao Z; Xu J; Liu Y; Li Y; Yang K; Lou Z; Lou L; Xu X
    Chemosphere; 2019 Jun; 224():306-315. PubMed ID: 30844587
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Use of Vegetable Fibers for PRB to Remove Heavy Metals from Contaminated Aquifers-Comparisons among Cabuya Fibers, Broom Fibers and ZVI.
    Mayacela Rojas CM; Rivera Velásquez MF; Tavolaro A; Molinari A; Fallico C
    Int J Environ Res Public Health; 2017 Jun; 14(7):. PubMed ID: 28672800
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Fate and transport of sulfidated nano zerovalent iron (S-nZVI): A field study.
    Nunez Garcia A; Boparai HK; de Boer CV; Chowdhury AIA; Kocur CMD; Austrins LM; Herrera J; O'Carroll DM
    Water Res; 2020 Mar; 170():115319. PubMed ID: 31790885
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents.
    Reinsch BC; Forsberg B; Penn RL; Kim CS; Lowry GV
    Environ Sci Technol; 2010 May; 44(9):3455-61. PubMed ID: 20380376
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe.
    Mueller NC; Braun J; Bruns J; Černík M; Rissing P; Rickerby D; Nowack B
    Environ Sci Pollut Res Int; 2012 Feb; 19(2):550-8. PubMed ID: 21850484
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Improved longevity of nanoscale zero-valent iron with a magnesium hydroxide coating shell for the removal of Cr(VI) in sand columns.
    Hu YB; Zhang M; Li XY
    Environ Int; 2019 Dec; 133(Pt B):105249. PubMed ID: 31665676
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time.
    Vítková M; Rákosová S; Michálková Z; Komárek M
    J Environ Manage; 2017 Jan; 186(Pt 2):268-276. PubMed ID: 27292579
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Triton X-100 improves the reactivity and selectivity of sulfidized nanoscale zerovalent iron toward tetrabromobisphenol A: Implications for groundwater and soil remediation.
    Shen W; Xu J; Zhu L
    J Hazard Mater; 2021 Aug; 416():126119. PubMed ID: 34492914
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Enhanced removal of Cr(VI) by silicon rich biochar-supported nanoscale zero-valent iron.
    Qian L; Shang X; Zhang B; Zhang W; Su A; Chen Y; Ouyang D; Han L; Yan J; Chen M
    Chemosphere; 2019 Jan; 215():739-745. PubMed ID: 30347367
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Dechlorination of Excess Trichloroethene by Bimetallic and Sulfidated Nanoscale Zero-Valent Iron.
    He F; Li Z; Shi S; Xu W; Sheng H; Gu Y; Jiang Y; Xi B
    Environ Sci Technol; 2018 Aug; 52(15):8627-8637. PubMed ID: 29952547
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Comparison of the transport of the aggregates of nanoscale zerovalent iron under vertical and horizontal flow.
    Li J; Ghoshal S
    Chemosphere; 2016 Feb; 144():1398-407. PubMed ID: 26498094
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Insights into enhanced removal of fluoranthene by sulfidated nanoscale zero-valent iron: In aqueous solution and soil slurry.
    Sheng X; Lyu S
    Chemosphere; 2023 Jan; 312(Pt 1):137172. PubMed ID: 36356808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.