BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36113446)

  • 1. An unsupervised automated paradigm for artifact removal from electrodermal activity in an uncontrolled clinical setting.
    Subramanian S; Tseng B; Barbieri R; Brown EN
    Physiol Meas; 2022 Nov; 43(11):. PubMed ID: 36113446
    [No Abstract]   [Full Text] [Related]  

  • 2. Unsupervised Machine Learning Methods for Artifact Removal in Electrodermal Activity.
    Subramanian S; Tseng B; Barbieri R; Brown EN
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():399-402. PubMed ID: 34891318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Preliminary Study on Automatic Motion Artifact Detection in Electrodermal Activity Data Using Machine Learning.
    Hossain MB; Posada-Quintero HF; Kong Y; McNaboe R; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6920-6923. PubMed ID: 34892695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Deep Convolutional Autoencoder for Automatic Motion Artifact Removal in Electrodermal Activity Signals: A Preliminary Study.
    Hossain MB; Posada-Quintero HF; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():325-328. PubMed ID: 36085929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelet-based motion artifact removal for electrodermal activity.
    Chen W; Jaques N; Taylor S; Sano A; Fedor S; Picard RW
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6223-6. PubMed ID: 26737714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of ambulatory electrodermal activity and the handling of low-quality segments.
    Pattyn E; Thammasan N; Lutin E; Tourolle D; Van Kraaij A; Kosunen I; De Raedt W; Van Hoof C
    Comput Methods Programs Biomed; 2023 Dec; 242():107859. PubMed ID: 37863009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breathe Easy EDA: A MATLAB toolbox for psychophysiology data management, cleaning, and analysis.
    Ksander JC; Kark SM; Madan CR
    F1000Res; 2018; 7():216. PubMed ID: 30647904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Analysis of Electrodermal Activity Decomposition Methods in Emotion Detection Using Machine Learning.
    Sriram Kumar P ; Govarthan PK; Ganapathy N; Agastinose Ronickom JF
    Stud Health Technol Inform; 2023 May; 302():73-77. PubMed ID: 37203612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Deep Convolutional Autoencoder for Automatic Motion Artifact Removal in Electrodermal Activity.
    Hossain MB; Posada-Quintero HF; Chon KH
    IEEE Trans Biomed Eng; 2022 Dec; 69(12):3601-3611. PubMed ID: 35544485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic identification of artifacts in electrodermal activity data.
    Taylor S; Jaques N; Chen W; Fedor S; Sano A; Picard R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1934-7. PubMed ID: 26736662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Electrodermal Activity from Multiple Body Locations Based on Standard EDA Indices' Quality and Robustness against Motion Artifact.
    Hossain MB; Kong Y; Posada-Quintero HF; Chon KH
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model- based filtering for artifact and noise suppression with state estimation for electrodermal activity measurements in real time.
    Tronstad C; Staal OM; Saelid S; Martinsen OG
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2750-3. PubMed ID: 26736861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comparison of Five Algorithmic Methods and Machine Learning Pattern Recognition for Artifact Detection in Electronic Records of Five Different Vital Signs: A Retrospective Analysis.
    Maleczek M; Laxar D; Kapral L; Kuhrn M; Abulesz YT; Dibiasi C; Kimberger O
    Anesthesiology; 2024 Jul; 141(1):32-43. PubMed ID: 38466210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of sympathetic responses to cognitive stress and pain through skin sympathetic nerve activity and electrodermal activity.
    Baghestani F; Kong Y; D'Angelo W; Chon KH
    Comput Biol Med; 2024 Mar; 170():108070. PubMed ID: 38330822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of ambient temperature on tonic and phasic electrodermal activity components.
    Qasim MS; Bari DS; Martinsen ØG
    Physiol Meas; 2022 Jun; 43(6):. PubMed ID: 35609614
    [No Abstract]   [Full Text] [Related]  

  • 16. Automated Pain Assessment using Electrodermal Activity Data and Machine Learning.
    Susam BT; Akcakaya M; Nezamfar H; Diaz D; Xu X; de Sa VR; Craig KD; Huang JS; Goodwin MS
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():372-375. PubMed ID: 30440413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Car Driver's Sympathetic Reaction Detection Through Electrodermal Activity and Electrocardiogram Measurements.
    Zontone P; Affanni A; Bernardini R; Piras A; Rinaldo R; Formaggia F; Minen D; Minen M; Savorgnan C
    IEEE Trans Biomed Eng; 2020 Dec; 67(12):3413-3424. PubMed ID: 32305889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Five Basic Human Senses Evoke Electrodermal Activity.
    Bari DS; Rammoo MNS; Aldosky HYY; Jaqsi MK; Martinsen ØG
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37837011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unsupervised EEG Artifact Detection and Correction.
    Saba-Sadiya S; Chantland E; Alhanai T; Liu T; Ghassemi MM
    Front Digit Health; 2020; 2():608920. PubMed ID: 34713069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Model-Based Framework for Assessing the Physiologic Structure of Electrodermal Activity.
    Subramanian S; Purdon PL; Barbieri R; Brown EN
    IEEE Trans Biomed Eng; 2021 Sep; 68(9):2833-2845. PubMed ID: 33822719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.