These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36113558)

  • 1. Molecular dynamics insights on temperature and pressure effects on electroporation.
    Müller WA; Sarkis JR; Marczak LDF; Muniz AR
    Biochim Biophys Acta Biomembr; 2022 Dec; 1864(12):184049. PubMed ID: 36113558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroporation of Skin Stratum Corneum Lipid Bilayer and Molecular Mechanism of Drug Transport: A Molecular Dynamics Study.
    Gupta R; Rai B
    Langmuir; 2018 May; 34(20):5860-5870. PubMed ID: 29708340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulation of reversible electroporation with Martini force field.
    Zhou C; Liu K
    Biomed Eng Online; 2019 Dec; 18(1):123. PubMed ID: 31878975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of electroporation sites in the complex lipid organization of the plasma membrane.
    Rems L; Tang X; Zhao F; Pérez-Conesa S; Testa I; Delemotte L
    Elife; 2022 Feb; 11():. PubMed ID: 35195069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing Lipid Bilayers under Ionic Imbalance.
    Lin J; Alexander-Katz A
    Biophys J; 2016 Dec; 111(11):2460-2469. PubMed ID: 27926847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translocation thermodynamics of linear and cyclic nonaarginine into model DPPC bilayer via coarse-grained molecular dynamics simulation: implications of pore formation and nonadditivity.
    Hu Y; Liu X; Sinha SK; Patel S
    J Phys Chem B; 2014 Mar; 118(10):2670-82. PubMed ID: 24506488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluations of a mechanistic hypothesis for the influence of extracellular ions on electroporation due to high-intensity, nanosecond pulsing.
    Sridhara V; Joshi RP
    Biochim Biophys Acta; 2014 Jul; 1838(7):1793-800. PubMed ID: 24680651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of activation energy for electroporation and pore growth rate in liquid crystalline and gel phases of lipid bilayers using molecular dynamics simulations.
    Majhi AK; Kanchi S; Venkataraman V; Ayappa KG; Maiti PK
    Soft Matter; 2015 Nov; 11(44):8632-40. PubMed ID: 26372335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of lipid electropores II: Comparison of continuum-level modeling of pore conductance to molecular dynamics simulations.
    Rems L; Tarek M; Casciola M; Miklavčič D
    Bioelectrochemistry; 2016 Dec; 112():112-24. PubMed ID: 27091314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroporation of archaeal lipid membranes using MD simulations.
    Polak A; Tarek M; Tomšič M; Valant J; Ulrih NP; Jamnik A; Kramar P; Miklavčič D
    Bioelectrochemistry; 2014 Dec; 100():18-26. PubMed ID: 24461702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculating transmembrane voltage on the electric pulse-affected cancerous cell membrane: using molecular dynamics and finite element simulations.
    Mirshahi S; Vahedi B; Yazdani SO; Golab M; Sazgarnia A
    J Mol Model; 2024 Jun; 30(7):221. PubMed ID: 38904863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of deformability and thermal motion of lipid membrane on electroporation: by molecular dynamics simulations.
    Sun S; Yin G; Lee YK; Wong JT; Zhang TY
    Biochem Biophys Res Commun; 2011 Jan; 404(2):684-8. PubMed ID: 21156156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroporation of heterogeneous lipid membranes.
    Reigada R
    Biochim Biophys Acta; 2014 Mar; 1838(3):814-21. PubMed ID: 24144543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes.
    Yusupov M; Van der Paal J; Neyts EC; Bogaerts A
    Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):839-847. PubMed ID: 28137619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dye Transport through Bilayers Agrees with Lipid Electropore Molecular Dynamics.
    Sözer EB; Haldar S; Blank PS; Castellani F; Vernier PT; Zimmerberg J
    Biophys J; 2020 Nov; 119(9):1724-1734. PubMed ID: 33096018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers.
    Fernández ML; Marshall G; Sagués F; Reigada R
    J Phys Chem B; 2010 May; 114(20):6855-65. PubMed ID: 20429602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular-level characterization of lipid membrane electroporation using linearly rising current.
    Kramar P; Delemotte L; Maček Lebar A; Kotulska M; Tarek M; Miklavčič D
    J Membr Biol; 2012 Oct; 245(10):651-9. PubMed ID: 22886207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational analysis of the simultaneous application of ultrasound and electric fields in a lipid bilayer.
    Müller WA; Sarkis JR; Marczak LDF; Muniz AR
    Biochim Biophys Acta Biomembr; 2024 Jun; 1866(7):184364. PubMed ID: 38901662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore disappearance in a cell after electroporation: theoretical simulation and comparison with experiments.
    Saulis G
    Biophys J; 1997 Sep; 73(3):1299-309. PubMed ID: 9284298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.