These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36113580)

  • 21. Glucose Decoration on Wall Teichoic Acid Is Required for Phage Adsorption and InlB-Mediated Virulence in Listeria ivanovii.
    Sumrall ET; Schneider SR; Boulos S; Loessner MJ; Shen Y
    J Bacteriol; 2021 Jul; 203(16):e0013621. PubMed ID: 34096780
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions of the cell-wall glycopolymers of lactic acid bacteria with their bacteriophages.
    Chapot-Chartier MP
    Front Microbiol; 2014; 5():236. PubMed ID: 24904550
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions.
    Weidenmaier C; Peschel A
    Nat Rev Microbiol; 2008 Apr; 6(4):276-87. PubMed ID: 18327271
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacteriophage receptors on Listeria monocytogenes cells are the N-acetylglucosamine and rhamnose substituents of teichoic acids or the peptidoglycan itself.
    Wendlinger G; Loessner MJ; Scherer S
    Microbiology (Reading); 1996 Apr; 142 ( Pt 4)():985-992. PubMed ID: 8936325
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immunochemical characterization of O polysaccharides composing the alpha-D-rhamnose backbone of lipopolysaccharide of Pseudomonas syringae and classification of bacteria into serogroups O1 and O2 with monoclonal antibodies.
    Ovod V; Rudolph K; Knirel Y; Krohn K
    J Bacteriol; 1996 Nov; 178(22):6459-65. PubMed ID: 8932301
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modifications of cell wall polymers in Gram-positive bacteria by multi-component transmembrane glycosylation systems.
    Rismondo J; Gillis A; Gründling A
    Curr Opin Microbiol; 2021 Apr; 60():24-33. PubMed ID: 33578058
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Envelope Structures of Gram-Positive Bacteria.
    Rajagopal M; Walker S
    Curr Top Microbiol Immunol; 2017; 404():1-44. PubMed ID: 26919863
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and enzymatic analysis of TarM glycosyltransferase from Staphylococcus aureus reveals an oligomeric protein specific for the glycosylation of wall teichoic acid.
    Koç C; Gerlach D; Beck S; Peschel A; Xia G; Stehle T
    J Biol Chem; 2015 Apr; 290(15):9874-85. PubMed ID: 25697358
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduced synthesis of phospho-polysaccharide in Lactococcus as a strategy to evade phage infection.
    Giesbers CAP; Fagan J; Parlindungan E; Palussière S; Courtin P; Lugli GA; Ventura M; Kulakauskas S; Chapot-Chartier MP; Mahony J; van Sinderen D
    Int J Food Microbiol; 2023 Dec; 407():110415. PubMed ID: 37774633
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The molecular mechanism of
    Rush JS; Edgar RJ; Deng P; Chen J; Zhu H; van Sorge NM; Morris AJ; Korotkov KV; Korotkova N
    J Biol Chem; 2017 Nov; 292(47):19441-19457. PubMed ID: 29021255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brussowvirus SW13 Requires a Cell Surface-Associated Polysaccharide To Recognize Its Streptococcus thermophilus Host.
    Lavelle K; Sadovskaya I; Vinogradov E; Kelleher P; Lugli GA; Ventura M; van Sinderen D; Mahony J
    Appl Environ Microbiol; 2022 Jan; 88(1):e0172321. PubMed ID: 34669424
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insight into the structure, biosynthesis, isolation method and biological function of teichoic acid in different gram-positive microorganisms: A review.
    Han J; Zhao X; Zhao X; Li P; Gu Q
    Int J Biol Macromol; 2023 Dec; 253(Pt 5):126825. PubMed ID: 37696369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The biosynthesis and functionality of the cell-wall of lactic acid bacteria.
    Delcour J; Ferain T; Deghorain M; Palumbo E; Hols P
    Antonie Van Leeuwenhoek; 1999; 76(1-4):159-84. PubMed ID: 10532377
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural and functional diversity in
    Shen Y; Boulos S; Sumrall E; Gerber B; Julian-Rodero A; Eugster MR; Fieseler L; Nyström L; Ebert MO; Loessner MJ
    J Biol Chem; 2017 Oct; 292(43):17832-17844. PubMed ID: 28912268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Listeria phage A511, a model for the contractile tail machineries of SPO1-related bacteriophages.
    Habann M; Leiman PG; Vandersteegen K; Van den Bossche A; Lavigne R; Shneider MM; Bielmann R; Eugster MR; Loessner MJ; Klumpp J
    Mol Microbiol; 2014 Apr; 92(1):84-99. PubMed ID: 24673724
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extraction and Purification of Wall-Bound Polymers of Gram-Positive Bacteria.
    Chateau A; Schneewind O; Missiakas D
    Methods Mol Biol; 2019; 1954():47-57. PubMed ID: 30864123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coordinate regulation of Gram-positive cell surface components.
    Hanson BR; Neely MN
    Curr Opin Microbiol; 2012 Apr; 15(2):204-10. PubMed ID: 22236805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacterial cell wall composition, lysozyme resistance, and the induction of chronic arthritis in rats.
    Lehman TJ; Allen JB; Plotz PH; Wilder RL
    Rheumatol Int; 1985; 5(4):163-7. PubMed ID: 3931201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacteriophage predation promotes serovar diversification in Listeria monocytogenes.
    Eugster MR; Morax LS; Hüls VJ; Huwiler SG; Leclercq A; Lecuit M; Loessner MJ
    Mol Microbiol; 2015 Jul; 97(1):33-46. PubMed ID: 25825127
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adherence and interaction of cationic quantum dots on bacterial surfaces.
    Yang C; Xie H; Li QC; Sun EJ; Su BL
    J Colloid Interface Sci; 2015 Jul; 450():388-395. PubMed ID: 25863221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.