These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier. Barreiro Carpio M; Gonzalez Martinez E; Dabaghi M; Ungureanu J; Arizpe Tafoya AV; Gonzalez Martinez DA; Hirota JA; Moran-Mirabal JM ACS Appl Mater Interfaces; 2023 Nov; 15(47):54234-54248. PubMed ID: 37964517 [TBL] [Abstract][Full Text] [Related]
7. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Ouyang L; Yao R; Zhao Y; Sun W Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915 [TBL] [Abstract][Full Text] [Related]
8. Effects of transglutaminase cross-linking process on printability of gelatin microgel-gelatin solution composite bioink. Song K; Ren B; Zhai Y; Chai W; Huang Y Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34823234 [TBL] [Abstract][Full Text] [Related]
9. Development and Characterization of Complementary Polymer Network Bioinks for 3D Bioprinting of Soft Tissue Constructs. Song S; Li Y; Huang J; Zhang Z Macromol Biosci; 2022 Sep; 22(9):e2200181. PubMed ID: 35778775 [TBL] [Abstract][Full Text] [Related]
10. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883 [TBL] [Abstract][Full Text] [Related]
11. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091 [TBL] [Abstract][Full Text] [Related]
12. Highly gallol-substituted, rapidly self-crosslinkable, and robust chitosan hydrogel for 3D bioprinting. Gwak MA; Lee SJ; Lee D; Park SA; Park WH Int J Biol Macromol; 2023 Feb; 227():493-504. PubMed ID: 36535357 [TBL] [Abstract][Full Text] [Related]
14. Development of agarose-gelatin bioinks for extrusion-based bioprinting and cell encapsulation. Dravid A; McCaughey-Chapman A; Raos B; O'Carroll SJ; Connor B; Svirskis D Biomed Mater; 2022 Jun; 17(5):. PubMed ID: 35654031 [TBL] [Abstract][Full Text] [Related]
15. A review on alginate-based bioinks, combination with other natural biomaterials and characteristics. Shams E; Barzad MS; Mohamadnia S; Tavakoli O; Mehrdadfar A J Biomater Appl; 2022 Aug; 37(2):355-372. PubMed ID: 35510845 [TBL] [Abstract][Full Text] [Related]
16. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks. Cui X; Li J; Hartanto Y; Durham M; Tang J; Zhang H; Hooper G; Lim K; Woodfield T Adv Healthc Mater; 2020 Aug; 9(15):e1901648. PubMed ID: 32352649 [TBL] [Abstract][Full Text] [Related]
17. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties. Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655 [TBL] [Abstract][Full Text] [Related]
18. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts. Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292 [TBL] [Abstract][Full Text] [Related]
19. Versatile xanthan gum-based support bath material compatible with multiple crosslinking mechanisms: rheological properties, printability, and cytocompatibility study. Lai G; Meagher L Biofabrication; 2024 Apr; 16(3):. PubMed ID: 38565131 [TBL] [Abstract][Full Text] [Related]
20. Development of a novel thermogelling PEC-based ECM mimicking nanocomposite bioink for bone tissue engineering. Bharadwaj T; Chrungoo S; Verma D J Biomater Sci Polym Ed; 2023 Dec; 34(18):2516-2536. PubMed ID: 37768276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]